Please circle your section:

Yin/Tuesday (2A)	Marshak/Tuesday (2C)	Baron/Tuesday $(2E)$
Yin/Thursday (2B)	Marshak/Thursday $(2D)$	Baron/Thursday $(2F)$

Instructions:

- 1. Solve all problems completely. Give complete reasoning unless it is stated that you don't need to.
- 2. *Show all your work.* Partial credit will be given where it is possible to see that you have a partial answer.
- 3. No calculators are allowed, or necessary.
- 4. No notes or references (including but not limited to the textbook) are allowed.
- 5. You must answer the questions entirely yourself.
- 6. If you need more space to work, please continue each problem on the back of the same sheet.
- 7. Look at all the problems before starting! You may find that some seem easier, or parts of them; do those first.

Question	Points	Score
1	12	
2	12	
3	12	
4	12	
5	12	
Total:	60	

Name: _____

1.	(12)be ta	poin aken	ts) Mark each statement as "true" or "false"; one point each, and work will not i into account. (You may use the blank space below for your notes, though.)
	Т	F	The differential equation $x(y')^2 + y = x^2y^2$ is a second-order differential equation.
	Т	\mathbf{F}	Every linear differential equation is separable.
	Т	\mathbf{F}	The differential equation $x(3+y)y' + y = 0$ is linear.
	Т	F	The differential equation $x(3+y) dy + y dx = 0$ has an integrating factor $u(x,y) = 1/(xy)$.
	Т	F	If $y = f(x)$ is any solution to the differential equation $2y' + 3y = 1$, then its interval of existence is $\mathbb{R} = (-\infty, \infty)$.
	Т	F	It is impossible for integral curves of a differential equation $P(x, y) dx + Q(x, y) dy = 0$ to cross.
	Т	F	The differential equation $y' = xy$ is homogeneous.
	Т	F	The equation $y' + 2xy^2 = 0$ has the general solution $y_h = 1/(x^2 + C)$ and the equation $y' + 2xy^2 = 2x$ has a particular solution $y_p = 1$; therefore $y' + 2xy^2 = 2x$ has the general solution $y = y_h + y_p = 1/(x^2 + C) + 1$.
	Т	F	The differential-form equation $(x^2 + xy^2) dx + (x^2y - y^2) dy = 0$ is exact.
	Т	\mathbf{F}	The differential-form equation $x^3y dx + xy^2 dy = 0$ is homogeneous.
	Т	F	The equation $\sin(x/y) dx + \cos(x/y) dy = 0$ can be made separable using a change of variables.

T F Every equilibrium point of the equation $y' = (x-2)^2(x-3)^2$ is stable.

2. Consider the equation

$$y^2 \, dx - (x^2 + 2xy) \, dy = 0.$$

(a) (4 points) Show that it is not separable and, using a change of variables, transform it into a separable equation. (Don't solve it.)

Solution: To separate this equation, we would need the Q(x, y) dy part to be a product of terms involving only x and terms involving only y. However, it is only a product x(x + 2y), so cannot be separated that way.

The left-hand side is homogeneous, so the substitution y = vx will make it separable:

$$(vx)^2 dx - (x^2 + 2x \cdot vx)(x \, dv + v \, dx) = v^2 x^2 dx - (x^2 + 2vx^2)x \, dv - (x^2 + 2vx^2)v \, dx$$

= $(-v^2 x^2 - vx^2) \, dx - (x^3 + 2vx^3) \, dv = 0$

and canceling the $-x^2$ factor gives the final result:

$$(v + v^2) \, dx + (x + 2vx) \, dv = 0.$$

(Note that this is separable: the second term is x(1+2v).)

(b) (4 points) Show that it is not exact and, using an integrating factor $\mu = \mu(x)$, transform it into an exact equation. (Don't solve it.)

Solution: To see that it is not exact we just apply the criterion:

$$D_y(y^2) = 2y$$
 $D_x(-(x^2 + 2xy)) = -2x - 2y,$

which are different. The differential equation for an integrating factor $\mu(x)$ is

$$\mu' = \frac{1}{Q} \left(D_y(P) - D_x(Q) \right) \mu = \frac{2x + 4y}{-(x^2 + 2xy)} = -\frac{2}{x} \mu.$$

Solving, we get $\mu = x^{-2}$. Finally, multiplying the original equation by this gives:

$$\frac{y^2}{x^2}dx - \left(1 + 2\frac{y}{x}\right)\,dy = 0,$$

which is exact (both partials are $2y/x^2$).

(c) (4 points) Solve the equation using the result of part (b).

Solution: Since it's exact we integrate the terms individually:

$$F(x,y) = \int \frac{y^2}{x^2} dx = -\frac{y^2}{x} + f(y)$$
$$D_y F(x,y) = -\frac{2y}{x} + f'(y) \stackrel{?}{=} -1 - 2\frac{y}{x}$$
$$f'(y) = -1 \implies f(y) = -y + C.$$

Therefore the general solution is $F(x, y) = -y^2/x - y = C$, or

$$y^2 + y = Cx.$$

3. Consider the differential equation

$$(3t^2 - 6)y' + 12ty = 2t.$$

(a) (3 points) Find the general solution $y_h(t)$ to the associated homogeneous equation.

Solution: The homogeneous equation is obtained by forgetting the terms not involving y:

$$(3t^2 - 6)y'_h + 12ty_h = 0.$$

It is separable, so can be solved by integration:

$$\frac{dy_h}{y_h} = -\frac{12t}{3t^2 - 6} dt \implies \ln|y_h| = \int -\frac{4t}{t^2 - 2} dt = -2\ln|t^2 - 2| + C$$
$$\implies y_h = \frac{C}{(t^2 - 2)^2} \quad (C \in \mathbb{R}).$$

(b) (5 points) Find the general solution y(t) by any of the following techniques: variation of parameters; finding a particular solution y_p ; integrating factor.

Solution: Variation of parameters: $y = v(t)/(t^2 - 2)^2$, where v satisfies the equation

$$(3t-6)\frac{1}{(t^2-2)^2}v' = 2t \iff v' = \frac{2}{3}t(t^2-2).$$

This can be integrated directly, giving:

$$v = \int \frac{2}{3}t(t^2 - 2) dt = \frac{1}{6}(t^2 - 2)^2 + C.$$

The general solution is therefore

$$y = \frac{1}{6} + \frac{C}{(t^2 - 2)^2}.$$

Particular solution: You could guess that $y_p(t) = 1/6$ solves the equation, as you can check:

$$(3t^2 - 6)y'_p + 12ty_p = 0 + 12t\frac{1}{6} = 2t.$$

Then the general solution is $y = y_h + y_p = 1/6 + C/(t^2 - 2)^2$, as before. (This is not the intended method, since it requires quite a bit of good luck.) Integrating factor: In normal form, the equation is

$$y' = \frac{2t}{3t^2 - 6} - \frac{4t}{t^2 - 2}y_t$$

so the formula for the integrating factor is

$$u = \exp\left(-\int -\frac{4t}{t^2 - 2} dt\right) = \exp\left(2\ln\left|t^2 - 2\right|\right) = (t^2 - 2)^2.$$

Then the solution to the equation is

$$uy = \int (t^2 - 2)^2 \cdot \frac{2t}{3t^2 - 6} dt = \int \frac{2}{3}t(t^2 - 2) dt = \frac{1}{6}(t^2 - 2)^2 + C,$$

and finally $y = 1/6 + C/(t^2 - 2)^2$ again.

(c) (4 points) Find the solution with initial value y(0) = 1, and determine its interval of existence.

Solution: No matter what, if we want y(0) = 1, we need $1 \qquad C \qquad 10$

$$1 = \frac{1}{6} + \frac{C}{(-2)^2} \implies C = \frac{10}{3}.$$

The specific solution is therefore

$$y = \frac{1}{6} + \frac{10}{3(t^2 - 2)^2}$$

which is discontinuous at $t = \pm \sqrt{2}$. Since the interval of existence must contain t = 0, it is therefore $(-\sqrt{2}, \sqrt{2})$.

- 4. A sponge has a volume of 30 cm^3 and is initially soaked with pure water. A flow of 33% (1/3) salt water is directed onto the sponge at a rate of $5 \text{ cm}^3/\text{s}$. As a result of the excess internal pressure, the sponge changes in two ways: first, it begins to expand, but as it is a sponge, it expands only 1/4 as much as the additional volume it absorbs; second, it begins to leak, dripping out $2 \text{ cm}^3/\text{s}$ of fluid.
 - (a) (5 points) What is the differential equation governing the mass of salt in the sponge?

Solution: Let x(t) be the mass of salt function. Then we have the rates in and out:

$$x'_{\rm in} = \frac{1}{3} \cdot 5$$
 $x'_{\rm out} = \frac{x}{\text{volume}} \cdot 2 = \frac{2x}{30 + \frac{5}{4}t}.$

(the rate of increase of the volume is 5/4 because the incoming volume is 5 and the expansion factor is 1/4). This gives the equation

$$x' = \frac{5}{3} - \frac{2}{30 + \frac{5}{4}t}x.$$

(b) (4 points) Find the mass of salt function for this sponge.

Solution: The equation is linear, and already in normal form, so we use an integrating factor:

$$u = \exp\left(-\int -\frac{2}{30 + \frac{5}{4}t} \, dt\right) = \exp\left(2 \cdot \frac{4}{5} \ln\left|30 + \frac{5}{4}t\right|\right) = (30 + \frac{5}{4}t)^{8/5}.$$

The general solution is therefore:

$$ux = \int (30 + \frac{5}{4}t)^{8/5} \frac{5}{3} dt = \frac{5}{3} \frac{4}{5} \frac{5}{13} (30 + \frac{5}{4}t)^{13/5} = \frac{20}{39} (30 + \frac{5}{4}t)^{13/5} + C$$
$$x = \frac{20}{39} (30 + \frac{5}{4}t) + \frac{C}{(30 + \frac{5}{4}t)^{8/5}}.$$

Since x(0) = 0 when the sponge initially has no salt water in it, we get:

$$0 = \frac{20}{39}(30) + \frac{C}{30^{8/5}} \implies C = \frac{20}{39}30^{13/5}.$$

Therefore the mass of salt is

$$x(t) = \frac{20}{39}(30 + \frac{5}{4}t) + \frac{20}{39}30^{13/5}\frac{1}{(30 + \frac{5}{4}t)^{8/5}}.$$

(c) (3 points) After a long time, you squeeze the sponge into a clean, dry container. How salty is the water?

Solution: The salt concentration in the sponge is $x(t)/(30 + \frac{5}{4}t)$:

$$\frac{20}{39} + \frac{20}{39} \left(\frac{30}{30 + \frac{5}{4}t}\right)^{13/5}.$$

As $t \to \infty$, this approaches 20/39.

5. (a) (4 points) Below is a direction field for a certain differential equation x'(t) = f(t, x) with several regions of the (t, x)-plane marked. In which region can we *not* expect a solution function x(t) to exist? Explain why in the space provided. Sketch a solution curve in that region, emphasizing how it is not the graph of a function.

5	×	/	\checkmark	/		/	/	/	1/	/	17	/	1		/	71	7	71	7	7	1	ľ	Ι	F
	-	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	1	Ι	I	١
4.5	~	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	1		-h	Ι	F
	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	/	1	Ι		١	١	١
4	~	/	ſ	/	/	/	^٢	/	/	/	/	/	/	/	/	/	/	1	1	I	١	١	١	Γ
۰ F		/	ł	/	/	/	/	/	/	/	/	/	/	/	/	/	1	Ι	I	١	1	N	\	\
3.5	2	/	ł	/	/	/	/	/	/	/	/	/	/	/	/	1	T	Ι	١	1	١	Ň	\	
3		/	Ł	/	/	/	/	/	/	/	/	/	/	/	1	Ι	Ι	١	١	/	١	Ň	\	
5	<	L) ~	/	/	/	_/	/	/	/	/	/	/	1	1	I	I	1	/	\	\		\setminus	\backslash
2.5	_	/	/	/	/	/	/	/	/	/	/	/	/	- 1		1	١	/	/	\	\		\backslash	_
2.0		/	/	/	/	/	/	/	/	/	/	/	1		1	1	\	1	\	/	\mathbf{i}	~	C	
2	F	/	/	/	~	/	/	/	٦.	/	/	1		1	\	\				/		~	~	-
		/	/	/	Ľ		1		1	/	1			\	\	\	<u>\</u>	\ \	~	$\overline{}$		~		
1.5	\leq	/			Ľ				Ι.	/		1		\	``							_	_	/
	Ľ.				ľ				Ľ.		1	``										_	_	
1	F.			1	Ľ	/	/	/	_	1														/
	[A		,	/		``	``		_		_			_							
0.5	Ē	_	_			/		`	_	_	_	_												
0		_	_	_	1		_	_	_	_	_			_			_							
0	_	_		-		_	_	_	_	_	_													
_0 5		\ \	Ì	/	, ,	_	/	_	_	_	_	_			_	_								_
-0.0		ì	/	'			/	/	/	_	_	B	_	_	_	_	_	_	_	_	_	_	_	_
_1		/	, V	,	V			/		/		_			_		_	_	_		_	-+	_	
-	-1		-0.	5	0	().5		1	1	.5		2	2.	5	3		3.5	5	4		4.5	<u> </u>	5

Solution: The answer is C, because the entire rectangle is crossed by a line of vertical slopes, indicating that f(t, x) is discontinuous (in fact, infinite) there. The existence theorem therefore does not apply, so we cannot expect a solution function (there is a solution, not shown, that is not the graph of a function).

(b) (4 points) Below is a direction field for the differential equation $x'(t) = \sqrt{|x|}$; draw two different solution curves satisfying x(0) = 0, and explain in the space provided why this does not violate the uniqueness theorem.

Solution: The uniqueness theorem requires $f(t, x) = \sqrt{|x|}$ and its partial *x*-derivative to be continuous, but we have

$$D_x \sqrt{|x|} = \begin{cases} 1/(2\sqrt{x}) & x > 0\\ -1/(2\sqrt{-x}) & x < 0 \end{cases}$$

(it does not exist at x = 0) and therefore it is *not* continuous at x = 0, in fact infinite. Since the initial condition is x(0) = 0, the uniqueness theorem does not apply to this initial value problem and there may be multiple solutions.

(c) (4 points) Draw the phase line for the differential equation $x' = \cos(x)$ on the axes provided. In the space below, list (or give a formula for) all the equilibrium points, and state which are stable and which unstable. Explain your conclusions in the space provided.

Solution: The equilibria are the zeroes of cos(x), namely the numbers $\pi/2$, $3\pi/2$, ... (that is, $n\pi/2$ with n odd). Stability can be tested by looking at the derivative, -sin(x), which is -1 at $\pi/2$, $5\pi/2$, ... and 1 at the others. Therefore the numbers $n\pi/2$, with $n = 1, 5, 9, \ldots$ are stable equilibria and the others are unstable. The phase line is:

