
Math 33B Practice Exam 2

Problem 1. Verify that y(t) = eλt and y(t) = teλt are solutions to y′′ − 2λy′ + λ2y = 0.
Then prove they are linearly independent.

Problem 2. Find the general solution to 4y′′ + y = 0. Then find the particular solution
that satisfies y(1) = 0 and y′(1) = −2.

Problem 3. A 100g = .1kg mass is hung from a spring having spring constant 9.8kg/s2. The
system is placed in a viscous medium that imparts a force of .3N when the mass is moving
at .2m/s. Assume that the force applied to the medium is proportional, but opposite, to the
mass’ velocity. The mass is displaced 10cm from its equilibrium position and released from
rest. Find the amplitude, frequency, and phase of the resulting motion.

Problem 4. Find the general solution to y′′ − 2y′ + 5y = 3 cos t. Then find the particular
solution which satisfies y(0) = 0 and y′(0) = −2.

Problem 5. Use a guess of the form yp(t) = (at+ b)e−4t to find a particular solution to the
equation y′′ + 3y′ + 2y = te−4t.

Problem 6. Find the general solution to the equation y′′ − y′ − 2y = 2e−t.

Problem 7. Find the characteristic polynomial, eigenvalues, and coresponding eigenvectors
for

A =

−2 5 1
0 2 3
0 0 1

 .

Then find the general solution to (~x)′ = A~x.

Problem 8. Find the general solution of (~x)′ = A~x where

A =

(
1 1
2 0

)
.

Then sketch the half line solution, and sketch a rough approximation of a solution in each
of the regions determined by the half-line solutions. Then find the particular solution when

~x(0) =

(
1
0

)
.

What is the behavior of this solution as t→∞?

Problem 9. Consider the system (~x)′ = A~x where

A =

(
4 −3
15 −8

)
.

What kind of equilibrium point is ~0? Compute the answer by finding the general solution to
the differential equation, and then verify your answer by examining the corresponding point
on the trace-determinant plane. Sketch a rough approximation of the solution curves.
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Problem 10. Suppose x and y are two particular solutions to the second order linear
differential equation

z′′(t) + p(t)z′(t) + q(t)z(t) = f(t).

Prove that x and y differ by a solution to the corresponding homogeneous equation.

Problem 11. Suppose y is a solution to the second order linear differential equation with
constant coefficients

y′′ + 2cy′ + ω2
0y = 0 c > 0, ω0 > 0

Determine the behavior of the solution as t→∞. (There are 3 cases to consider.)
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Problem 1.

Answer: Plug into the equation to check they are solutions. Compute the Wronskian to
be W (t) = e2λt, which is clearly non-zero.

Problem 2.

Answer: y(t) = A sin( t
2
− φ), by solving characteristic equation and absorbing the second

piece into a phase. initial value problem: y(t) = 4 sin(1−t
2

).

Problem 3.

Answer: frequency is
√
167
2

, amplitude is 7
√
334

835
e−15t/2, phase is arctan( 15√

167
).

Problem 4.

Answer: y(t) = c1e
t sin(2t) + c2e

t cos(2t) − 3 sin(t)
10

+ 3 cos(t)
5

, initial value problem is y(t) =
1
20

(−6 sin(t)− 11et sin(2t) + 12 cos(t)− 12et cos(2t)).

Problem 5.

Answer: yp(t) = e−4t( 5
36

+ t
6
).

Problem 6.

Answer: y(t) = Ae−t +Be2t − 2
3
e−tt

Problem 7.

Answer: −λ3 + λ2 + 4λ − 4, λ1 = −2, v1 = (1, 0, 0), λ2 = 2, v2 = (5, 4, 0), λ3 = 1, v3 =

(14, 9,−3). general solution is y(t) =
3∑
i=1

Cie
λitvi.

Problem 8.

Answer: y(t) = c1e
2tv1 + c2e

−tv2 where v1 = (1, 1) and v2 = (1,−2). use these to draw the
half-lines. initial value, c1 = 2

3
, c2 = 1

3
. As t→∞, we approach the line spanned by v1 from

below.

Problem 9.

Answer: spiral sink.

Problem 10.

Answer: Define G(t) = x(t)− y(t). plug G(t) into the homogenous equation to check that
it is a solution. after you plug in, rewrite G(t) as x− y, then apply the fact that x, y solved
the inhomogenous equation to just get f(t)− f(t) = 0.

Problem 11.
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Answer: roots are −c±
√
c2 − ω2

0.

case 1: overdamped. the solution is y(t) = A1e
(−c−
√
c2−ω2

0)t +A2e
(−c+
√
c2−ω2

0)t. Certainly
−c −

√
c2 − ω2

0) < 0 (negative number minus positive number). We also claim that −c +√
c2 − ω2

0 < 0. To check this, note that c2 > c2 − ω2
0. Taking square roots and rearranging

gives the desired inequality. Therefore, the solution is y(t) = A1e
r1t + A2e

r2t, where both
r1, r2 are negative. Thus, y(t)→ 0 and t→∞.

case 2: underdamped. Let ω =
√
ω2
0 − c2. Then the solution is y(t) = e−ct(A1 cos(ωt) +

A2 sin(ωt)), which decays to zero as t→∞.
case 3: critically damped. The solution is y(t) = A1e

−ct +A2te
−ct. As t→∞, te−ct → 0

by L’Hospital’s rule. So, y → 0 in this case as well.
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