MATH 33B EXAM 2 SOLUTIONS

Problem 1.

(A) (2 points) For which ϕ are the functions $y_1(t) = \cos(t)$ and $y_2(t) = \sin(t+\phi)$ not linearly independent?

$$\left\{0,\frac{\pi}{2},\pi,\frac{3\pi}{2},2\pi\right\}$$

Solution: $\pi/2$ and $3\pi/2$. For these values of ϕ , $\sin(t+\phi) = \pm \cos(t)$, which is a scalar multiple of $\cos(t)$. The others give a multiple of $\sin(t)$, which is linearly independent from $\cos(t)$. This can be seen by computing a Wronskian.

Remark: The other version of the test had $\cos(t + \phi)$ and $\sin(t)$ instead, and the answer is the same.

(B) (2 points) Which of the following are solutions to the differential equation y'' - 5y' + 4y = 0? $\{e^t, e^{2t}, e^{3t}, e^{4t}, e^{5t}, e^{6t}\}$

Solution: e^t and e^{4t} . This can be seen from factoring the characteristic polynomial $\lambda^2 - 5\lambda + 4 = (\lambda - 4)(\lambda - 1) = 0$. **Remark:** The other version of the test had y'' - 6y' + 5y = 0, to which the answer is

- e^t and e^{5t} .
- (C) (2 points) Let p(t) and q(t) be continuous on the interval (α, β) . Suppose u and v are solutions to the differential equation y'' + p(t)y' + q(t)y = 0. For which $t \in (\alpha, \beta)$ can the Wronskian of u and v be zero? { all, some, none } Solution: All or none. The Wronskian of two solutions is either always zero on the interval (this is the case that u and v are linearly dependent), or never zero on the interval (this is the case u and v are linearly independent).
- (D) (2 points) If the differential equation $y'' + 2cy' + \omega_0^2 y = 0$ is overdamped, then the general solution involves terms of which type? $\{e^{\lambda t}, te^{\lambda t}, \cos(\omega t), \sin(\omega t), e^{-ct} \cos(\omega t), e^{-ct} \sin(\omega t)\}$ Solution: $e^{\lambda t}$. The overdamped case is when there are two real roots to the characteristic polynomial.
- (E) (2 points) Given the system $\mathbf{x}' = \begin{pmatrix} 1 & -2 \\ 5 & -1 \end{pmatrix} \mathbf{x}$, the origin is what type of equilibrium point?

{ saddle, nodal source, nodal sink, center, spiral source, spiral sink }

Solution: Center. Letting A denote the matrix, we compute Tr(A) = 0 and det(A) = -1 - 10 = 8. This corresponds to a center point by looking at the trace determinant plane.

Remark: The other version of the exam had the matrix $B = \begin{pmatrix} 1 & 2 \\ 5 & -1 \end{pmatrix}$ which has trace 0 and determinant -12, corresponding to a saddle.

Problem 2. (10 points) Consider the second order differential equation $y'' - 2y' + y = e^t + \sin(t)$.

- (a) (4 points) Find the general solution to the associated homogeneous differential equation. **Solution:** We solve the characteristic equation $\lambda^2 - 2\lambda + 1 = (\lambda - 1)^2 = 0$. This means the general homogeneous solution is $y_h(t) = C_1 e^t + C_2 t e^t$.
- (b) (6 points) Find a particular solution, and use it to give the general solution. **Solution:** We solve the two equations $y'' - 2y' + y = e^t$ and $y'' - 2y' + y = \sin(t)$ separately.
 - (1) We know that e^t and te^t are homogeneous solutions, so they will not work. Guessing $y_p(t) = At^2e^t$, we get

$$y'_p(t) = 2Ate^t + At^2e^t = A(2t+t^2)e^t$$

$$y''_p(t) = A(2+2t)e^t + A(2t+t^2)e^t = A(2+4t+t^2)e^t$$

Plugging in, we get the equation

$$y_p'' - 2y_p' + y_p = A(2 + 4t + t^2)e^t - 2A(2t + t^2)e^t + At^2e^t = 2Ae^t,$$

so A = 1/2.

(2) We guess $y_p(t) = A\cos(t) + B\sin(t)$. We compute

$$y'_p(t) = -A\sin(t) + B\cos(t)$$

$$y''_p(t) = -A\cos(t) - B\sin(t).$$

Plugging in, we have

$$y_p'' - 2y_p' + y_p = -A\cos(t) - B\sin(t) - 2(-A\sin(t) + B\cos(t)) + A\cos(t) + B\sin(t)$$
$$= (-A - 2B + A)\cos(t) + (-B + 2A + B)\sin(t)$$

Hence B = 0 and A = 1/2.

We now combine our answers to get the general solution:

$$y(t) = y_h(t) + \frac{1}{2}t^2e^t + \frac{1}{2}\cos(t) = C_1e^t + C_2te^t + \frac{1}{2}t^2e^t + \frac{1}{2}\cos(t).$$

Problem 3. (10 points) Consider the matrix $A = \begin{pmatrix} 2 & 2 & 0 \\ -1 & 4 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

- (a) (6 points) Find the general solution to the differential equation $\mathbf{x}' = A\mathbf{x}$.
 - **Solution:** One eigenvalue is easy to spot. If we subtract 2I from A, we get a row and column of zeroes, so det(A 2I) = 0. Now we see that $(A 2I)e_3 = \vec{0}$, the third column of A 2I, so $\vec{e_3}$ is an eigenvector corresponding to the eigenvalue 2, giving one solution

$$C_3 e^{2t} \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$
.

Now we only have to deal with the upper left 2×2 matrix. There, we see the characteristic polynomial $\lambda^2 - 6\lambda + 10$, which means the roots are

$$\lambda = \frac{6 \pm \sqrt{36 - 40}}{2} = 3 \pm i.$$

Looking at A - (3 + i)I, we have

$$\begin{pmatrix} -1-i & 2 & 0\\ -1 & 1-i & 0\\ 0 & 0 & -1-i \end{pmatrix}$$

and we observe that $\begin{pmatrix} 1-i\\ 1\\ 0 \end{pmatrix}$ lies in the kernel. This gives us two more solutions

$$C_1 e^{3t} \left(\cos(t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} - \sin(t) \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right) + C_2 e^{3t} \left(\cos(t) \begin{pmatrix} -1\\0\\0 \end{pmatrix} + \sin(t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right).$$

Adding these to the one above gives the general solution.

(b) (2 points) Find the particular solution when $\mathbf{x}(0) = \begin{pmatrix} 1\\1\\1 \end{pmatrix}$.

Solution: Plugging in t = 0 to the general solution, we get

$$\begin{pmatrix} 1\\1\\1\\1 \end{pmatrix} = \mathbf{x}(0) = C_1 \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} + C_2 \begin{pmatrix} -1\\0\\0\\0 \end{pmatrix} + C_3 \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} = \begin{pmatrix} C_1 - C_2\\C_1\\C_3 \end{pmatrix}$$

Hence $C_1 = C_3 = 1$ and $C_2 = 0$.

(c) (2 points) Describe the behavior of the particular solution as $t \to -\infty$. Solution: The particular solution is

$$e^{3t}\left(\cos(t)\begin{pmatrix}1\\1\\0\end{pmatrix}-\sin(t)\begin{pmatrix}-1\\0\\0\end{pmatrix}\right)+e^{2t}\begin{pmatrix}0\\0\\1\end{pmatrix}$$

The behavior as $t \to -\infty$ is the same as the behavior as $t \to \infty$ of

$$e^{-3t} \left(\cos(-t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} - \sin(-t) \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right) + e^{-2t} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \\ = e^{-3t} \left(\cos(t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \sin(t) \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right) + e^{-2t} \begin{pmatrix} 0\\0\\1 \end{pmatrix} \\ = e^{-2t} \left(e^{-t} \left(\cos(t) \begin{pmatrix} 1\\1\\0 \end{pmatrix} + \sin(t) \begin{pmatrix} -1\\0\\0 \end{pmatrix} \right) + \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right)$$

Hence the particular solution is converging to $\vec{0}$ along the tangent $\begin{pmatrix} 0\\0\\1 \end{pmatrix}$. Moreover, if

we look at the projection to the xy-plane, we see that we have the behavior of a spiral sink.

Problem 4. (10 points) Consider the case of critically damped harmonic motion

$$y'' + 2cy' + \omega_0^2 y = 0.$$

- (a) (2 points) What are the conditions on c and ω_0 for the critically damped case? **Solution:** The conditions for harmonic motion are $c \ge 0$ and $\omega_0 > 0$. Critically damped means that c > 0 and $\omega_0 = c$.
- (b) (4 points) Prove that any solution decays to zero as $t \to \infty$. Solution: The general solution for critically damped harmonic motion is

$$C_1 e^{-ct} + C_2 t e^{-ct} = e^{-ct} (C_1 + C_2 t).$$

Using L'Hospital's rule, we compute

$$\lim_{t \to \infty} e^{-ct} (C_1 + C_2 t) = \lim_{t \to \infty} \frac{C_1 + C_2 t}{e^{ct}} = \lim_{t \to \infty} \frac{C_2}{ce^{ct}} = 0.$$

- (c) (4 points) Prove that any solution curve crosses the time axis at most once. **Solution:** We want to know when a solution vanishes: $y(t) = e^{-ct}(C_1 + C_2 t) = 0$. This
 - happens if and only if $C_1 + C_2 t = 0$. If $C_1 = C_2 = 0$, then the solution is always zero, so the solution curve *never* crosses the time axis. If $C_2 = 0$ and $C_1 \neq 0$, then the solution curve again never crosses the time axis, since $y(t) \neq 0$ for all t. If $C_2 \neq 0$, then y(t) = 0exactly at $t = -C_1/C_2$, so the solution curve crosses the time axis exactly once.