
Math 33B Exam 2 Solutions

Problem 1.

(A) (2 points) For which φ are the functions y1(t) = cos(t) and y2(t) = sin(t+φ) not linearly
independent?{

0,
π

2
, π,

3π

2
, 2π

}
Solution: π/2 and 3π/2. For these values of φ, sin(t+φ) = ± cos(t), which is a scalar
multiple of cos(t). The others give a multiple of sin(t), which is linearly independent
from cos(t). This can be seen by computing a Wronskian.
Remark: The other version of the test had cos(t + φ) and sin(t) instead, and the
answer is the same.

(B) (2 points) Which of the following are solutions to the differential equation y′′−5y′+4y =
0?
{et, e2t, e3t, e4t, e5t, e6t}
Solution: et and e4t. This can be seen from factoring the characteristic polynomial
λ2 − 5λ+ 4 = (λ− 4)(λ− 1) = 0.
Remark: The other version of the test had y′′ − 6y′ + 5y = 0, to which the answer is
et and e5t.

(C) (2 points) Let p(t) and q(t) be continuous on the interval (α, β). Suppose u and v are
solutions to the differential equation y′′ + p(t)y′ + q(t)y = 0. For which t ∈ (α, β) can
the Wronskian of u and v be zero?
{ all, some, none }
Solution: All or none. The Wronskian of two solutions is either always zero on the
interval (this is the case that u and v are linearly dependent), or never zero on the
interval (this is the case u and v are linearly independent).

(D) (2 points) If the differential equation y′′+2cy′+ω2
0y = 0 is overdamped, then the general

solution involves terms of which type?
{eλt, teλt, cos(ωt), sin(ωt), e−ct cos(ωt), e−ct sin(ωt)}
Solution: eλt. The overdamped case is when there are two real roots to the charac-
teristic polynomial.

(E) (2 points) Given the system x′ =

(
1 −2
5 −1

)
x, the origin is what type of equilibrium

point?
{ saddle, nodal source, nodal sink, center, spiral source, spiral sink }
Solution: Center. Letting A denote the matrix, we compute Tr(A) = 0 and det(A) =
−1 − 10 = 8. This corresponds to a center point by looking at the trace determinant
plane.

1



Remark: The other version of the exam had the matrix B =

(
1 2
5 −1

)
which has

trace 0 and determinant −12, corresponding to a saddle.

Problem 2. (10 points) Consider the second order differential equation y′′ − 2y′ + y =
et + sin(t).

(a) (4 points) Find the general solution to the associated homogeneous differential equation.
Solution: We solve the characteristic equation λ2−2λ+ 1 = (λ−1)2 = 0. This means
the general homogeneous solution is yh(t) = C1e

t + C2te
t.

(b) (6 points) Find a particular solution, and use it to give the general solution.
Solution: We solve the two equations y′′ − 2y′ + y = et and y′′ − 2y′ + y = sin(t)
separately.

(1) We know that et and tet are homogeneous solutions, so they will not work. Guessing
yp(t) = At2et, we get

y′p(t) = 2Atet + At2et = A(2t+ t2)et

y′′p(t) = A(2 + 2t)et + A(2t+ t2)et = A(2 + 4t+ t2)et.

Plugging in, we get the equation

y′′p − 2y′p + yp = A(2 + 4t+ t2)et − 2A(2t+ t2)et + At2et = 2Aet,

so A = 1/2.

(2) We guess yp(t) = A cos(t) +B sin(t). We compute

y′p(t) = −A sin(t) +B cos(t)

y′′p(t) = −A cos(t)−B sin(t).

Plugging in, we have

y′′p − 2y′p + yp = −A cos(t)−B sin(t)− 2(−A sin(t) +B cos(t)) + A cos(t) +B sin(t)

= (−A− 2B + A) cos(t) + (−B + 2A+B) sin(t)

Hence B = 0 and A = 1/2.

We now combine our answers to get the general solution:

y(t) = yh(t) +
1

2
t2et +

1

2
cos(t) = C1e

t + C2te
t +

1

2
t2et +

1

2
cos(t).

Problem 3. (10 points) Consider the matrix A =

 2 2 0
−1 4 0
0 0 2

 .
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(a) (6 points) Find the general solution to the differential equation x′ = Ax.
Solution: One eigenvalue is easy to spot. If we subtract 2I from A, we get a row and
column of zeroes, so det(A− 2I) = 0. Now we see that (A− 2I)e3 = ~0, the third column
of A− 2I, so ~e3 is an eigenvector corresponding to the eigenvalue 2, giving one solution

C3e
2t

0
0
1

 .

Now we only have to deal with the upper left 2×2 matrix. There, we see the characteristic
polynomial λ2 − 6λ+ 10, which means the roots are

λ =
6±
√

36− 40

2
= 3± i.

Looking at A− (3 + i)I, we have−1− i 2 0
−1 1− i 0
0 0 −1− i



and we observe that

1− i
1
0

 lies in the kernel. This gives us two more solutions

C1e
3t

cos(t)

1
1
0

− sin(t)

−1
0
0

+ C2e
3t

cos(t)

−1
0
0

+ sin(t)

1
1
0

 .

Adding these to the one above gives the general solution.

(b) (2 points) Find the particular solution when x(0) =

1
1
1

 .

Solution: Plugging in t = 0 to the general solution, we get1
1
1

 = x(0) = C1

1
1
0

+ C2

−1
0
0

+ C3

0
0
1

 =

C1 − C2

C1

C3


Hence C1 = C3 = 1 and C2 = 0.

(c) (2 points) Describe the behavior of the particular solution as t→ −∞.
Solution: The particular solution is

e3t

cos(t)

1
1
0

− sin(t)

−1
0
0

+ e2t

0
0
1


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The behavior as t→ −∞ is the same as the behavior as t→∞ of

e−3t

cos(−t)

1
1
0

− sin(−t)

−1
0
0

+ e−2t

0
0
1


= e−3t

cos(t)

1
1
0

+ sin(t)

−1
0
0

+ e−2t

0
0
1


= e−2t

e−t
cos(t)

1
1
0

+ sin(t)

−1
0
0

+

0
0
1



Hence the particular solution is converging to ~0 along the tangent

0
0
1

. Moreover, if

we look at the projection to the xy-plane, we see that we have the behavior of a spiral
sink.

Problem 4. (10 points) Consider the case of critically damped harmonic motion

y′′ + 2cy′ + ω2
0y = 0.

(a) (2 points) What are the conditions on c and ω0 for the critically damped case?
Solution: The conditions for harmonic motion are c ≥ 0 and ω0 > 0. Critically
damped means that c > 0 and ω0 = c.

(b) (4 points) Prove that any solution decays to zero as t→∞.
Solution: The general solution for critically damped harmonic motion is

C1e
−ct + C2te

−ct = e−ct(C1 + C2t).

Using L’Hospital’s rule, we compute

lim
t→∞

e−ct(C1 + C2t) = lim
t→∞

C1 + C2t

ect
= lim

t→∞

C2

cect
= 0.

(c) (4 points) Prove that any solution curve crosses the time axis at most once.
Solution: We want to know when a solution vanishes: y(t) = e−ct(C1 +C2t) = 0. This
happens if and only if C1 +C2t = 0. If C1 = C2 = 0, then the solution is always zero, so
the solution curve never crosses the time axis. If C2 = 0 and C1 6= 0, then the solution
curve again never crosses the time axis, since y(t) 6= 0 for all t. If C2 6= 0, then y(t) = 0
exactly at t = −C1/C2, so the solution curve crosses the time axis exactly once.
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