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1. (b points) Given that y = x is a solution of:
(@° + 1)y" — 2y’ + 2y = 0, (1)

find a linearly independent solution by reduction of order.

Note: you may use appropriate formulas.
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2. (5 points) The functions ¢, = 1? and y, = t* are two distinct solutions of the initial
value problem:
t*y” —4ty' + 6y =0, y(0) =0,y'(0) = 0. (2)

Why does this not violate the uniqueness theorem?
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3. (10 points) Consider the following differential equation for logistic population growth

with harvesting:
dN N
—rN(1-2) AN 3
a ( I\) )

where v, K and A are positive constants. For the following cases, compute the critical
points, determine their stability and sketch the equilibrium and some non-equilibrium
solutions.

(a) A<

(b) A=r.
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4. (a) Find the general solution of

"

— 4" 4 14y" — 20y + 25y = 0,

if the corresponding characteristic equation has the following roots

1426, 1 -2, 1426, 124

Note that y = y(z) and %™ represents the fourth order derivative with respect to

aI.

(b) Using the method of undetermined coefficients, set up the correct form for a par-
ticular solution y, to the following nonhomogeneous differential equation:

e

— 4y 4+ 14y" — 20y’ + 25y = €*" sin(2x) + €” cos(2x).

Note: do not solve for the undetermined coefficients.
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5. (a) Using the method of variation of parameters from first principles, show that the
equation " +y = f(x) leads to the particular solution:

Yplx) = /? ft) sin(x —t) dt.
Jo

(b) Find a similar formula for a particular solution of the equation y” + k%y = f(x)
where £ is a positive constant.
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1. (5 points) Given that y = x is a solution of:
(> +1)y" — 2zy + 2y =0, (1)

find a linearly independent solution by reduction of order.

Note: you may use appropriate formulas.
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2. (5 points) The functions y; = t? and y, = ¢3 are two distinct solutions of the initial
value problem:
t*y" — 4ty + 6y =0, y(0)=0,4'(0) =0. (2)

Why does this not violate the uniqueness theorem?




MATH 33B, 11 May 2015, Midterm 2 Page 5 of 11



3. (10 points) Consider the following differential equation for logistic population growth

with harvesting:
dN N
— =rN|1——= ] —=AN

a < K ) )

where r, K and \ are positive constants. For the following cases, compute the critical
points, determine their stability and sketch the equilibrium and some non-equilibrium
solutions.

(a) A<

(b) A=r.
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4. (a) Find the general solution of
Y — 4y + 14y — 20y’ + 25y = 0,
if the corresponding characteristic equation has the following roots
142, 1 —24, 142, 1—24.

Note that y = y(z) and y™ represents the fourth order derivative with respect to
x.

(b) Using the method of undetermined coefficients, set up the correct form for a par-
ticular solution y, to the following nonhomogeneous differential equation:

y" — 4y + 14y" — 20y’ + 25y = €** sin(2x) + €” cos(27). (4)

Note: do not solve for the undetermined coeflicients.
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5. (a) Using the method of variation of parameters from first principles, show that the
equation y” + y = f(x) leads to the particular solution:

() = /O " f ) sine — 1) dt.

(b) Find a similar formula for a particular solution of the equation y” + k?y = f(x)
where k is a positive constant.
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