1. (10 pts) Solve the initial value problem
V= (@ +2zy)y =0,  y(1) =1

(Hint: Look for an integrating factor that depends only on x.)
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2. (10 pts) Consider the differential equation

y' = e Y(2y* + 1y — 6y?).

(a) (5 pts) Find the equilibria, draw the phase line, and classify each
equilibrium as stable or unstable
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(b) (5 pts) Draw a rc?ugh sketclz(é%{tl)le d1rect1on field, including the

equilibrium solutions, and sketch a few solution curves in each region
between equilibria.
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. (10 pts) Recall that Newton’s Law of Cooling says that the tempera-
ture T' of an object will change according to the following differential
equation:

T' = —k(T — A)

where A is the temperature of the object’s surroundings, and k is a
positive constant that depends on the object. You take a pie out of the
oven at 200° F. From previous pies you’ve baked, you have calculated
that k¥ = 0.1/min. The temperature in the kitchen is 70° F, but is
dropping at 1°/min. Find an equation for the temperature 7" of the pie
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4. (10 pts) A 100 L tank initially contains 10 L of a salt-water solution at
a concentration of 5 g of salt per liter of water. At time ¢t = 0, water
begins flowing into the tank through two pipes: pipe A contains pure
water and flows at 1 L/min, and pipe B contains another salt-water
solution at a concentration of 3 g/L and flows at 2 L/min. At the same
time, a drain is opened at the bottom of the tank that lets the (perfectly
mixed) salt-water solution flow out at 2 L/min.

(a) (5 pts) Set up a differential equation describing the amount of salt
y in the tank at time ¢.
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(b) (5 pts) Solve the differential equation from part (a). How much salt
will be in the tank at the instant that it is full?
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