MATH 33A EXAM 2

Problem 1.

- (A) (1 point) The rank of an $m \times n$ matrix is what type of thing? { number, vector, subspace, matrix, linear transformation } Solution: The rank is the number of pivots in the reduced row echelon form of the matrix. Thus is is a number.
	- (B) (1 point) The span of the columns of an $m \times n$ matrix is what type of thing? { number, vector, subspace, matrix, linear transformation } **Solution:** The span is set of all linear combinations of the columns, which is a subspace.
- (C) (2 points) Suppose A is an $n \times n$ matrix such that $\langle \vec{x}, \vec{y} \rangle = 0$ implies $\langle A\vec{x}, A\vec{y} \rangle = 0$. Then A is an orthogonal matrix. { True, False } **Solution:** False. Consider the zero $n \times n$ matrix, which has zero as every entry.
	- (D) (2 points) Let A be a 6×7 matrix whose image is two dimensional. What is the dimension of $\text{im}(A^T)^{\perp}$? $\{0, 1, 2, 3, 4, 5, 6, 7\}$

Solution: 5. One computes that $\text{im}(A^T)^{\perp} = \text{ker}((A^T)^T) = \text{ker}(A)$. By the rank nullity theorem, $\dim(\ker(A)) + \dim(\text{im}(A)) = 7$, the number of columns. Hence $dim(ker(A)) = 7 - 2 = 5$.

Remark: The other version of this test had a 7×5 matrix, for which the answer is 3.

(E) (2 points) What is the angle between the vectors $\sqrt{ }$ \mathcal{L} 1/3 2/3 −2/3 \setminus and $\sqrt{ }$ \mathcal{L} √ $\sqrt{2}$ 2 0 \setminus \bigcap ?

 \int π, 5π 6 , 3π 4 , 2π 3 , π 2 , π 3 , π 4 , π 6 , 0 \mathcal{L} .

Solution: $\pi/4$. We compute that $\cos(\theta)$ is the dot product of the two **SOUTION:** $\pi/4$. We compute that $\cos(\theta)$ is the dot product of the two vectors divided by their lengths. The dot product is $\sqrt{2}$, and their lengths are 1 and 2 respectively. Thus $\theta = \cos^{-1}(\sqrt{2}/2)$.

Remark: The other version of the test had the same answer, but the vectors were a bit different.

(F) (2 points) Suppose A and B are $n \times n$ symmetric invertible matrices. Which of the following is not necessarily symmetric? ${A^T, A^2, A^{-1}, A+B, A-B^T, AB}$ **Solution:** If A and B are symmetric, then $A = A^T$ and $B = B^T$, so we

can write all the answers without transposes: ${A, A², A⁻¹, A + B, A - B, AB}$ Now the map $A \mapsto A^T$ is a linear map, so we can reduce the choices to ${A^2, A^{-1}, AB}$ We know that $(A^{-1})^T = (A^T)^{-1} = A^{-1}$, so we can eliminate that option. Finally, $(AB)^{T} = B^{T}A^{T}$ and $(A^{2})^{T} = A^{T}A^{T} = AA = A^{2}$. The answer is AB. Remark: The other version of the test had different choices of answers: $\{B^2, B^{-1}, A^T B^T, A + B, A - B^T, B^T\}$ The correct answer here is the product $A^T B^T$.

Problem 2. (10 points)

(a) (8 points) Compute the QR factorization of the matrix $M =$ $\sqrt{ }$ $\overline{}$ 1 0 1 7 7 8 1 2 1 7 7 6 \setminus $\Bigg\}$.

Solution: We compute the QR factorization by first computing the Gram-Schmidt orthonormalization of the columns. The first column $\vec{v}_1 = \vec{w}_1$ has length 10, so

$$
\vec{u}_1 = \frac{1}{10} \begin{pmatrix} 1 \\ 7 \\ 1 \\ 7 \end{pmatrix}.
$$

We set \vec{v}_2 to be the second column, and

$$
\vec{w}_2 = \vec{v}_2 - \langle \vec{v}_2, \vec{u}_1 \rangle \vec{u}_1 = \begin{pmatrix} 0 \\ 7 \\ 2 \\ 7 \end{pmatrix} - \frac{100}{10} \frac{1}{10} \begin{pmatrix} 1 \\ 7 \\ 1 \\ 7 \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}.
$$

This vector has length $\sqrt{2}$, so $\vec{u}_2 = \frac{1}{\sqrt{2}}$ $\overline{\overline{2}}\vec{w}_2$. Finally, we set \vec{v}_3 to be the third column and

$$
\vec{w}_3 = \vec{v}_3 - \langle \vec{v}_3, \vec{u}_1 \rangle \vec{u}_1 - \langle \vec{v}_3, \vec{u}_2 \rangle \vec{u}_2 = \begin{pmatrix} 1 \\ 8 \\ 1 \\ 6 \end{pmatrix} - \frac{100}{10} \frac{1}{10} \begin{pmatrix} 1 \\ 7 \\ 1 \\ 7 \end{pmatrix} - 0 \vec{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}.
$$

Again, \vec{w}_3 has length $\sqrt{2}$, so $\vec{u}_3 = \frac{1}{\sqrt{2}}$ $\frac{1}{2}\vec{w}_3$. This means that

$$
Q = \begin{pmatrix} \frac{1}{10} & \frac{-1}{\sqrt{2}} & 0 \\ \frac{7}{10} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{10} & \frac{1}{\sqrt{2}} & 0 \\ \frac{7}{10} & 0 & \frac{-1}{\sqrt{2}} \end{pmatrix} \text{ and } M = \begin{pmatrix} 10 & 10 & 10 \\ 0 & \sqrt{2} & 0 \\ 0 & 0 & \sqrt{2} \end{pmatrix}
$$

(b) (2 points) Compute the matrix of the projection onto $V = \text{im}(M)$. Solution: The matrix of the projection is

$$
QQ^{T} = \begin{pmatrix} \frac{1}{10} & \frac{-1}{\sqrt{2}} & 0\\ \frac{7}{10} & 0 & \frac{1}{\sqrt{2}}\\ \frac{1}{10} & \frac{1}{\sqrt{2}} & 0\\ \frac{7}{10} & 0 & \frac{-1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} \frac{1}{10} & \frac{7}{10} & \frac{1}{10} & \frac{7}{10}\\ \frac{-1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 0\\ 0 & \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \end{pmatrix} = \frac{1}{100} \begin{pmatrix} 51 & 7 & -49 & 7\\ 7 & 99 & 7 & -1\\ -49 & 7 & 51 & 7\\ 7 & -1 & 7 & 99 \end{pmatrix}.
$$

Problem 3. (10 points) Consider $A =$ $\sqrt{ }$ $\overline{1}$ 1 1 1 0 0 1 \setminus and $\vec{b} =$ $\sqrt{ }$ \mathcal{L} 3 3 3 \setminus $\vert \cdot \vert$

(a) (6 points) Find a vector \vec{x}^* which minimizes $||A\vec{x}^* - b||$. Solution: We compute

$$
A^T A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}
$$

which is invertible. Hence

 1.4

$$
\vec{x}^* = (A^T A)^{-1} A^T \vec{b} = \frac{1}{3} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix}
$$

(b) (2 points) Verify that $A\vec{x}^* - \vec{b}$ is orthogonal to im(A). Solution: We compute

$$
A\vec{x}^* - \vec{b} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -1 \end{pmatrix}
$$

which is easily seen to have zero inner product with the columns of A.

(c) (2 points) Compute the matrix of the projection onto $\text{im}(A)$. Solution: We calculate

$$
A(A^T A)^{-1} A^T = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} = \frac{1}{3} \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}
$$

Problem 4. (10 points) Let A be an $m \times n$ matrix and $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in \mathbb{R}^n$. Suppose that $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3, A\vec{v}_4$ are linearly independent. Show that $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ are linearly independent. **Solution:** Suppose we have a linear relation $c_1\vec{v}_1 + c_2\vec{v}_2 + c_3\vec{v}_3 + c_4\vec{v}_4 = \vec{0}$. We must show it is is the trivial relation, i.e., $c_1 = c_2 = c_3 = c_4 = 0$. Left multiply by A to get the linear relation $c_1A\vec{v}_1 + c_2A\vec{v}_2 + c_3A\vec{v}_3 + c_4A\vec{v}_4 = \vec{0}$. But $A\vec{v}_1, A\vec{v}_2, A\vec{v}_3, A\vec{v}_4$ are linearly independent, so the only linear relation is the trivial linear relation, i.e., $c_1 = c_2 = c_3 = c_4 = 0$.