
Math 33A Exam 1 Solutions

Problem 1. Below is a list of statements. Decide which are true and which are false. On
the left of each, write “TRUE” or “FALSE” in capital letters. You must also write your
answer (“TRUE” or “FALSE” in capital letters) on the front page of the exam.

There is no partial credit on this problem.

(A) (2 points) Suppose A is m×n. The vector A~x for ~x ∈ Rn is a linear combination of the
rows of A.
Solution: False. Replace rows with columns to get a true statement.

(B) (2 points) Every square matrix is invertible.
Solution: False. The zero matrix is a counter example.

(C) (2 points) Suppose A is m×n, and A~x = ~b has a unique solution for some vector~b ∈ Rm.
Then n > m.
Solution: False. If there’s a unique solution for some ~b, then rref(A) must have a pivot
in every column. Hence there must be at least as many rows as columns, so m ≥ n.

(D) (2 points) Suppose A is m× n, with n > m. Then ker(A) = {0}.
Solution: False. If n > m, then there will be columns without pivots in rref(A), which
means there are free variables.

(E) (2 points) If T : Rn → Rm is one-to-one, then ker(T ) = {~0}.
Solution: True. Suppose ~x ∈ ker(T ), so T~x = 0. Then T~x = T~0, so since T is one-to-
one, ~x = ~0. Hence ker(T ) ⊂ {~0}. The other containment is trivial.
Remark: There was a second version of the test with 2 similar questions, and 3 of the
same in different order. We give those solutions below.

(F) (2 points) Suppose A is m× n, with ker(A) = {0}. Then m = n.
Solution: False. All we know is that there are at least as many rows as columns, but
there could be more! For instance,

A =

(
1
0

)
satisfies ker(A) = ~0.

(G) (2 points) If T : Rn → Rm is onto, then ker(T ) = {~0}. Solution: False. To get a true
statement, replace onto with one-to-one. There are plenty of counter examples. For
instance, T = LA : R2 → R for

A =
(
1 0

)
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satisfies T is onto, but ker(T ) is spanned by(
0
1

)
.

Problem 2. (10 points) You must show all work to get partial credit.

(a) (5 points) Use Gaussian elimination to compute the inverse of A =

(
1 2
3 5

)
.

Solution: We perform Gaussian elimination on the following matrix:(
1 2 1 0
3 5 0 1

)
−→

(
1 2 1 0
0 −1 −3 1

)
−→

(
1 2 1 0
0 1 3 −1

)
−→

(
1 0 −5 2
0 1 3 −1

)
.

One now verifies: (
1 2
3 5

)(
−5 2
3 −1

)
=

(
−5 2
3 −1

)(
1 2
3 5

)
= I2.

(b) (5 points) Find a 2×3 matrix A and a 3×2 matrix B such that AB = I2, but BA 6= I3.
Hint: You can do this only using 0’s and 1’s for the entries of A and B.
Solution: One example that works is

A =

(
1 0 0
0 1 0

)
and B =

1 0
0 1
0 0

 .

Problem 3. (10 points) You must show all work to get partial credit.

Consider the 4× 5 matrix A =


1 2 0 0 3
0 0 1 0 2
0 0 0 1 1
0 0 0 0 0

 .

(a) (5 points) Find a set of vectors in R5 which spans ker(A).
Solution: The free variables correspond to the columns without pivots. We set
x2 = s and x5 = t. We then have the following equations:

x1 + 2s + 3t = 0

x3 + 2t = 0

x4 + t = 0.
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This means that any vector in the kernel is of the form

~x =


−2s− 3t

s
−2t
−t
t

 = s


−2
1
0
0
0

+ t


−3
0
−21
−1
1

 .

This means that a spanning set for ker(A) is given by the set


−2
1
0
0
0

 ,


−3
0
−21
−1
1


 .

(b) (3 points) Find a set of vectors in R4 which spans im(A).
Solution: The cheap answer is to take all the columns of A. But this won’t get you
the remaining points in part (c). We see A is already in reduced row echelon form. By
inspection, we can see that the second and fifth columns are redundant, and can be
ignored without affecting the span of the columns. Hence a spanning set is given by


1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0


 .

(c) (2 points) If you answered both part (a) and part (b) correctly, you get the final 2
points for this question if the number of vectors you found in part (a) plus the number
of vectors you found in part (b) equals 5.
Solution: We verify that 2 + 3 = 5. Hooray! More importantly, this means that we
have actually found bases for ker(A) and im(A) = CS(A), not just spanning sets. The
Rank Nullity Theorem tells us that the rank (the dimension of im(A)) plus the nullity
(the dimension of ker(A) equals the number of columns. Since A is already in reduced
row echelon form, we can see that the rank of A is 3, so a basis of im(A) has 3 elements,
and a basis of ker(A) has 2 elements.

Problem 4. (10 points) Suppose we have j vectors ~v1, ~v2, . . . , ~vj ∈ Rn and k vectors
~w1, ~w2, . . . , ~wk ∈ span{~v1, ~v2, . . . , ~vj}. Prove that any linear combination of ~w1, ~w2, . . . , ~wk is
also a linear combination of ~v1, ~v2, . . . , ~vj.

Note: You are being asked to prove V = span{~v1, ~v2, . . . , ~vj} is closed under taking lin-
ear combinations. You may not assume V is a subspace in this question, since that would
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beg the question!
Solution: Suppose that we have a linear combination

~w =
k∑

i=1

ci ~wi ci ∈ R.

For each i = 1, . . . , n, there are ai,` ∈ R for ` = 1, . . . , j such that

~wi =

j∑
`=1

ai,`~v` for all ` = 1, . . . , j.

We now see that

~w =
k∑

i=1

ci ~wi

=
k∑

i=1

ci

(
j∑

`=1

ai,`~v`

)

=
k∑

i=1

j∑
`=1

ciai,`~v`

=

j∑
`=1

k∑
i=1

ciai,`~v`

=

j∑
`=1

(
k∑

i=1

ciai,`

)
︸ ︷︷ ︸

b`

~v`

=

j∑
`=1

b`~v`.

Thus ~w is a linear combination of ~v1, . . . , ~vj.
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