Midterm 2 Linear Algebra and Applications $(Math 33A-001)$

Answer the questions in the spaces provided. If you run out of room for an answer, please continue on the back of the page. Show all of your work.

Name:

Scanned with CamScanner

$$
\mathbb{R}^2 \rightarrow \mathbb{R}^3
$$

5

1. 5 points Let A be a 3×2 matrix with column vectors \vec{v}_1 , \vec{v}_2 , i.e.,

$$
A = \begin{pmatrix} \frac{1}{\mathbf{v}} & \frac{1}{\mathbf{v}} \\ 1 & 1 \end{pmatrix}
$$

Let $\vec{\mathbf{v}}$ be a non-zero vector in \mathbb{R}^3 . You are told that \overrightarrow{v} , \overrightarrow{v} ₁, \overrightarrow{v} ₂ form a basis of \mathbb{R}^3 .
Then what is the rank of the matrix *B* with column vectors $\vec{\mathbf{v}}$, $2\vec{\mathbf{v}} + \vec{\mathbf{v}}$ ₁, $2\vec{\mathbf{v}} + 3\vec{\mathbf{v}}$ ₂, i.e., $B = \begin{pmatrix} \frac{1}{\mathbf{v}} & \frac{1}{\mathbf{v}} \\ \frac{1}{\mathbf{v}} & 2\vec{\mathbf{v}} + \vec{\mathbf{v}}_1 & 2\vec{\mathbf{v}} + 3\vec{\mathbf{v}}_2 \\ 1 & 1 & 1 \end{pmatrix}$?

$$
A = \begin{pmatrix} \frac{1}{\mathbf{v}} & \frac{1}{\mathbf{v}} \\ 2\vec{\mathbf{v}} + \vec{\mathbf{v}}_1 & 2\vec{\mathbf{v}} + 3\vec{\mathbf{v}}_2 \\ 1 & 1 & 1 \end{pmatrix}
$$

(Remark: An answer without proper justification ears you a '0' point. You must justify your answer.)

c,
$$
\vec{v} + c_z (2\vec{v} + \vec{v}_i) + c_s (2\vec{v} + 3\vec{v}_z) = 0
$$

\n $\vec{v} (c_1+2c_2+2c_3)+\vec{v}_1(c_2)+\vec{v}_2(3c_3)=0$
\n $\vec{A} \vec{v} + B\vec{v}_1 + C\vec{v}_2 = 0$
\nSince $\vec{v}_1 \vec{v}_1 \vec{v}_2$ from a basis of \vec{E}^3 , by definition of
\na basis, they must be linearly independent:
\nThus, we can only have the trivial solution
\n $\vec{A} = B = C = 0$.
\n $\vec{A} = B = C = 0$.
\n $\vec{C} = 0$
\nSince we get the trivial solution $c_i = c_i = 0$
\n $\vec{C} = 0$
\nSince we get the trivial solution $c_i = c_i = 0$
\n $\vec{C} = 0$
\n $\vec{C} = 0$
\nSince we get the trivial solution $c_i = c_i = 0$
\n $\vec{C} = 0$
\nSince we get the trivial solution $c_i = c_i = 0$
\n $\vec{C} = 0$
\n $\vec{$

Scanned with CamScanner

In. indep, span V 2. 5 points Let V be a subspace of \mathbb{R}^n of dim $V = m$ and $\{\overrightarrow{v_1}, \overrightarrow{v_2}, \dots, \overrightarrow{v_m}\}$ a basis of V. Show that a vector $\vec{x} \in \mathbb{R}^n$ is orthogonal to V if it is orthogonal to all the vectors $\{\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, \ldots, \overrightarrow{\mathbf{v}}_m\}.$

vector & V

 B_{y} definition of a basis, \vec{v} , \vec{v}_1 , \vec{v}_2 ,..., \vec{v}_m are all Inearly independent. Vectors are orthogonal to each other if their dot product equals zero. By definition of a basis, we can also say that $\vec{v}_1, \ldots, \vec{v}_m$ span V. Since $\overrightarrow{v_1}, \dots, \overrightarrow{v_m}$ are linearly independent, $C_1\overrightarrow{U_1}$ $C_2\overrightarrow{U_1}$ C_3 $C_4\overrightarrow{U_1}$ $C_m\overrightarrow{V_n}$ $=$ \cap such that we get the trivial relation $G = 5$ = Cm = 0. If we take the dot product of \vec{x} and the span of V, we get $c_1\vec{x}\cdot\vec{v_1}$ + ... $\tau c_m\vec{x}\cdot\vec{v_n} = \vec{x}\cdot(c_1\vec{v_1} + \dots + c_m\vec{v_n})=0$

Thus, $\overline{x} \perp v_i$ for $i=1,\ldots,m$.

Page 3

- 3. 10 points For each of the following statements, determine whether it is true or false.
	- 1. Let A and B be two $n \times n$ matrices. You are told that $A + B$ is invertible. Then $\overline{2}$ A and B are necessarily invertible.
	- 2. Let $S = {\overrightarrow{\mathbf{v}}_1, \overrightarrow{\mathbf{v}}_2, ..., \overrightarrow{\mathbf{v}}_k}$ be a set of linearly independent vectors of \mathbb{R}^n . Let $T = {\overrightarrow{\mathbf{w}_1}, \overrightarrow{\mathbf{w}_2}, ..., \overrightarrow{\mathbf{w}_l}}$ be another set of linearly independent vectors of \mathbb{R}^n . 2 Then $S \cup T$ is always a linearly independent set of vectors.
	- ha indep., span R 3. Let $S = {\overrightarrow{v}_1, \overrightarrow{v}_2, ..., \overrightarrow{v}_k}$ be a set of orthonormal vectors of \mathbb{R}^n . Let $T =$ $\{\overrightarrow{w}_1, \overrightarrow{w}_2, \ldots, \overrightarrow{w}_l\}$ be another set of orthonormal vectors of \mathbb{R}^n . Then $S \cup T$ is $\overline{2}$ always an orthonormal set of vectors.
	- 4. Let A and B be two $n \times n$ matrices such that $rank(AB) < n$. You are told that A $\overline{\mathcal{L}}$ is invertible. Then B is never invertible.
	- 5. Let A and B be two $n \times n$ matrices such that $rank(A) = rank(B)$. Then $Ker(A) =$ 2 $Ker(B)$ always holds.

(Remark: Only a 'True' or 'False' answer without any justification ears you a '0' point. You must justify your answer.) $h \wedge e$ vendle

1)
$$
\boxed{\text{False}}
$$
 : Prove by contradiction
\n
$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}
$$
\n
$$
B = \begin{bmatrix} 2 & 3 \\ 3 & 4 \end{bmatrix}
$$
\n
$$
A + B = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
A = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A + B) = -2 \neq 0
$$
\n
$$
det(A
$$

Page 4

 $Fa'se$ 3) To thonormal vectors are linearly independent and span $\not\!\!E^{n}$. Since no unit vector can be a linear combination of other unit vectors and orthonormal vectors are perpendicular to each other, the union of S and I does not ensure that the vectors in the respective sets are still perpendicular, $e_{1}g$, $S = \frac{1}{2} {s \choose 0} {0 \choose 1}$
and T contain $\begin{pmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{pmatrix}$, this vector is not perpendicular
to $\begin{pmatrix} 0 \\ 0 \end{pmatrix} \ni SUT$ and y) [True] An invertible matrix Anxn must have rank(A)=n. When you multiply two muertible matrices, you get another invertible matrix. Since Anxi & Brxx, $(AB)_{n \times n}$. If A and B are mvertible than $(AB)_{n \times n}$ must be invertible and rank(AB) must be n. Since A is invertible, the only way that AB has
a rank less than n is if B is not invertible and thus AB is not invertible. 5) [False] By the rank-nullity theorem, $rank(A)+dim(Ker A)=n$ $rank(B) + dim(ker B) = n$ Since $rank(A) = rank(B)$, dim(ker A) = dim(ker B). $A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix}$ ref= $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ However, the number of vectors that form the
basis of ka(A) kk(B) being the same does NOT entail

that the vector of their respective bases must be

and Ler(A) = span of $[-2]$. B = $[-2]$: refA= $[-2]$: rank(A)=1
and Ler(A) = span of $[-2]$. B = $[-2]$: refB= $[-2]$: rank(B)=1
and Ler(B)=span of $[-3]$. : LerA = LerB.

 $\begin{bmatrix} 1 & 2 & 0 \\ 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 3 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$

 $v_1 = 2v_1$
 $v_2 = +3$ + $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$

 $\begin{bmatrix} 1 & 5 & 0 \\ 1 & 3 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ are
 $\omega_1 = -3\omega_2 \Rightarrow$ span of $s[37]$

 $B = \begin{bmatrix} 1 & 3 \\ 1 & 3 \end{bmatrix}$ nef = $\begin{bmatrix} 1 & 3 \\ 0 & 0 \end{bmatrix}$

Scanned with CamScanner