MATH 33A - SECTION 2 PRACTICE MIDTERM #2

Problem 1. Consider the linear transformation

$$T: \mathbb{R}^4 \longrightarrow \mathbb{R}^2$$

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \longmapsto \begin{bmatrix} 2x_1 - x_2 + 2x_3 + 4x_4 \\ 2x_1 + 3x_2 + x_3 \end{bmatrix}.$$

(a) Find a basis of $\ker(T)$.

(b) Find a basis of im(T).

Problem 2. Find $\operatorname{proj}_V(\vec{x})$, where $\vec{x} = \begin{bmatrix} 49 & 49 & 49 \end{bmatrix}^\top$ and V is the kernel of the linear transformation $T : \mathbb{R}^3 \longrightarrow \mathbb{R}$ given by $T \begin{bmatrix} x \\ y \\ z \end{bmatrix} = 6x + 2y - 3z$.

Problem 3. Let A be a square $n \times n$ matrix.

- (a) Show that $(A^{\top})^{\top} = A$.
- (b) Show that the matrix $A + A^{\top}$ is symmetric.
- (c) Show that the matrix $A A^{\top}$ is skew-symmetric.
- (d) Write A as the sum of a symmetrix matrix and a skew-symmetric matrix.

Problem 4. Compute det	0	0	0	0	0	2
	1	1	1	1	1	3
	0	1	2	2	2	4
	0	0	1	3	3	5
	0	0	0	1	4	6
	0	0	0	0	1	7