MATH 33A - MIDTERM 1

Discussion session: 28

Question 1: $\left(\begin{array}{c} 1 \\ 1 \end{array}\right)$ / 25

Question 2: 25 / 25

Question 3: 20/25

Total: 80 / 100

Problem 1. (25 points)

(a) (10 points) Let A be a square and invertible matrix. Show that

$$(A^T)^{-1} = (A^{-1})^T.$$

(b) (15 points) Find the inverse of the matrix

$$B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}.$$

$$(A^{T})^{2} = A$$

$$(A^{T})^{2} = \begin{bmatrix} d - c \\ -b & a \end{bmatrix} \xrightarrow{ad-bc}$$

$$(A^{-1}) = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} -b & -c \\ -b & a \end{bmatrix} = \begin{bmatrix} -b & -c$$

(5) Multiply row 3 by -3 and add it to the 1st row (changing 1st row). Also, divide now 3 by 2.

Answer.

Steps Taken

Problem 2. (25 points)

(a) (10 points) Find the matrix of the linear transformation that first projects a vector $v \in \mathbb{R}^2$ on the line y = x, then rotates it counterclockwise by a $\pi/4$ angle, and then scales it by a factor k > 0.

(b) (15 points) Let w be a vector on a line L in \mathbb{R}^2 that passes through the origin. Consider the $proj_L(v)$ which is the projection of another vector $v \in \mathbb{R}^2$ onto L. Finally let A be the 2×2 matrix whose columns are the vectors w and $proj_L(v)$. Is A invertible? Justify your

answer.

(a)
$$R_{t}(p_{t}, p_{t})(x)$$

(b) $R_{t}(p_{t}, p_{t})(x)$
 $R_{t}(p_{t}, p_{t})(x)$

Because the det(A) \$0,000 Wz \(\frac{\w_1^2 v_1 + \w_1 w_2 v_2}{\w_1^2 + \w_2^2} \) - \w_1 \(\frac{\w_1 w_2 v_1}{\w_1^2 + \w_2^2} \)
A is invertible. WIW2V Another explanation for gruby

A To Myertble because A To linearly indep. system since The and projet are not linear combinations or multiples of each other. So, ker (A)= {o} - which man that A is invertible. Doing thus in full appropriational attent hosn't as efficient as it could're been.

The hard of the

Problem 3. (25 points)

(a) (10 points) Find the matrix of the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ with the property that

 $T\left(\begin{bmatrix}3\\1\end{bmatrix}\right) = \begin{bmatrix}9\\3\end{bmatrix} \qquad T\left(\begin{bmatrix}1\\2\end{bmatrix}\right) = \begin{bmatrix}2\\4\end{bmatrix}.$

(b) (15 points) Let A be a given 3×3 matrix, and v be a given vector in \mathbb{R}^3 . Is the following transformation $F: \mathbb{R}^3 \to \mathbb{R}^3$ that is given by

$$F(y) = v \times y + Ay$$
 for all $y \in \mathbb{R}^3$,

where

where
$$v \times y = \begin{bmatrix} v_{2}y_{3} - v_{3}y_{2} \\ v_{3}y_{1} - v_{1}y_{3} \\ v_{1}y_{2} - v_{2}y_{1} \end{bmatrix} \text{ for } v = (v_{1}, v_{2}, v_{3}), y = (y_{1}, y_{2}, y_{3}), b \in \mathbb{C}$$
a linear transformation?
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$A = \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 9 \\ 3 \end{bmatrix}$$

$$A = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 2$$

[ab][3] [cd][2]

(b) L.T. are de Bred by: f(x+y)=f(x)+f(y) f(kx)=kf(x) F(y) = Vxy+Ay = [\frac{1243}{1243} - \frac{124}{123}] + A[\frac{12}{123}] F(Kg) = K(F(g)) = K[V243-V34] + A[4]

Holds

(Kg) = K(F(g)) = K[V243-V34]

(V341-V15)

(V14-V15) F(ty) is already a combination of two matrix linear Why? combinations Ay and vxy , so F(ty) must be closed under addition as well. So, F(3) is a linear team formation.

Problem 4. (25 points)
(a) (10 points) Is the set

a subspace of \mathbb{R}^2 ?
(b) (15 points) Let V, W be $V \cap$ is also a subspace of \mathbb{R}^n .

(b) (15 points) Let V, W be two subspaces of \mathbb{R}^n . Show that $V \cap W = \{x \in \mathbb{R}^n \mid x \in V \text{ and } x \in W\}$ also a subspace of \mathbb{R}^n .

 $V = \{(x, y) \in \mathbb{R}^2 \mid x^2 = y^2\}$

Vis not empty set V Vis not empty set V Vtotos, under linear combinations v

Sog Vis a subspace of 12 June 2 dosed under scalar the fination.

(b) If Vikon and W are subspaces of R" they both satisfy the above 3 conditions part a). The intersection of V the above 3 conditions part a). The intersection of V and W must also, since vands where both closed under an empty set. Also, since vands where both closed under linear combinations of V and W both (V/W) linear combinations, any solutions of V and W both (V/W) linear combinations, any solutions of vand white scalar must closed under linear combinations of the scalar must closed under linear combinations.