
Midterm 2 Solutions
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(a)

We want to find the length of the parametrized curve r from the initial point
corresponding to time t = 1 to the point corresponding to a general time t, where
t is in the interval [1,∞). We will denote this length by s(t). To calculate s(t),
we use the formula

s(t) =

∫ t

1

||r′(τ)||dτ.

Thus we need to find ||r′(τ)||. Since r′(τ) = 〈2τ−1/2, τ−1, 2〉, we get

s||r′(τ)|| =
√

4

τ
+

1

τ2
+ 4

=

√
4τ2 + 4τ + 1

τ2

=

√
(2τ + 1)2

τ2

=
2τ + 1

τ

= 2 +
1

τ
.

Therefore,

s(t) =

∫ t

1

||r′(τ)||dτ

=

∫ t

1

(
2 +

1

τ

)
dτ

= 2t− 2 + ln t.

Notes: (1) Many students tried to calculate the integral∫ ∞
1

||r′(τ)||dτ,
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rather than ∫ t

1

||r′(τ)||dτ.

The former integral gives the length of the whole curve starting from time t = 1,
which is infinite, as we can see from the arclength function s(t) = 2t − 2 + ln t
(s(t)→∞ as t→∞). The former integral represents a single value, not a func-
tion. When you are asked to find the arclength function, your answer must be a
function, with a variable input; the function gives the length of the curve from
the initial point corresponding to t = 1 to the terminal point corresponding to
the input time.

(2) Some students used the lower limit 0 in the integral rather than 1. Remem-
ber, the lower limit is the initial time from which you are measuring arclength,
which in this case is t = 1. Just because it is the initial time, does not mean it
is zero.

(3) Some students wrote something like the following:

s(t) =

∫ t

1

||r′(τ)||dτ

=

∫ t

1

||r′(1)||dτ

=

∫ t

1

3dτ

= 3(t− 1),

which is incorrect. You do not evaluate an integral by evaluating the integrand
(in this case ||r′(τ)||) at an endpoint; you evaluate an integral by evaluating
the antiderivative of the integrand at the endpoints. This may have just been
a careless mistake, but since several students did it I wanted to point it out.

(b)

To find the arclength parametrization, we must express the time t as a function
of the arclength s. We know that

s = g(t) =
1

6
((1 + 4t)3/2 − 1).
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Solving for t, we get

s =
1

6
((1 + 4t)3/2 − 1)

⇐⇒ 6s = (1 + 4t)3/2 − 1

⇐⇒ 6s+ 1 = (1 + 4t)3/2

⇐⇒ (6s+ 1)2/3 = 1 + 4t

⇐⇒ t =
((6s+ 1)2/3 − 1)

4
= g−1(s).

Now, we insert this equation for t into the original parametrization r, to get the
arclength parametrization r1:

r1(s) = r(g−1(s))

=

〈
(6s+ 1)2/3 − 1

4
,

2

3

(
((6s+ 1)2/3 − 1)

4

)3/2

,
2√
3

(
((6s+ 1)2/3 − 1)

4

)3/2
〉
.

2

Using the curvature formula

κ(x) =
|f ′′(x)|

(1 + f ′(x)2)3/2
,

we substitute f(x) = eαx to get

κ(x) =
α2eαx

(1 + α2e2αx)3/2
, (1)

and then setting x = 0 we get

κ(0) =
α2

(1 + α2)3/2
(2)

for the curvature of the graph of y = eαx at x = 0. We want to find the value
or values of α which maximize this curvature, so we differentiate with respect
to α:

d

dα

(
α2

(1 + α2)3/2

)
=

2α(1 + α2)3/2 − 3α3(1 + α2)1/2

(1 + α2)3

=
α(2− α2)

(1 + α2)5/2
.

Setting this derivative equal to zero to find the critical points, we get α = 0
and α = ±

√
2. Now for α = 0, the curvature at the origin is zero, as we see by

plugging α = 0 into the formula (2) (which makes sense, since in that case the
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graph is a straight line). Since the curvature (2) is positive for all other values
of α, this is not a maximum; so we can discard α = 0. Since the curvature (2)
goes to zero as α goes to positive infinity and negative infinity, the maximum
curvature must occur at α =

√
2 or α = −

√
2. Substituting these values into

the curvature formula (2) gives the same curvature, 2/(33/2). So the maximum
curvature occurs at both α =

√
2 and α = −

√
2.

Note: Some students tried to differentiate the function (1) above with respect
to x, rather than differentiating the function (2) with respect to α. Remember,
(1) gives the curvature of the graph of y = eαx at a general point x, but we only
care about the point x = 0. We would only differentiate (1) if we wanted to
maximize the curvature of a single graph (corresponding to a single value of α)
over all points x. Instead, we are trying to maximize the curvature at a single
point (x = 0) over all graphs (corresponding to all values of α).

3

First we find the velocity and acceleration. We have

v(t) = r′(t) = 〈1,− sin t, cos t〉,

a(t) = r′′(t) = 〈0,− cos t,− sin t〉.

Next, we use the formula

aT(t) = a(t) ·T(t) =
a(t) · v(t)

||v(t)||

to find the tangential component of acceleration aT(t):

aT(t) =
a(t) · v(t)

||v(t)||

=
〈0,− cos t,− sin t〉 · 〈1,− sin t, cos t〉

||v(t)||

=
0 + sin t cos t− sin t cos t

||v(t)||

=
0

||v(t)||
= 0.

So, aT(t) = 0. To find the normal component of acceleration aN(t), we could
use the similar formula

aN(t) = a(t) ·N(t),

but since we have already found aT(t) it is easier to use the formula

aN(t) =
√
||a(t)||2 − aT(t)2.
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To apply the formula we first first find ||a(t)||2:

||a(t)||2 = 02 + (− cos t)2 + (− sin t)2 = 1.

Therefore,
aN(t) =

√
||a(t)||2 − aT(t)2 =

√
1− 0 = 1.

So, the normal component of acceleration is aN(t) = 1.

4

There are multiple ways to find the limit; here are two.

First method. Whenever you see the expression x2 +y2, it is usually a good idea
to try polar coordinates, since in polar coordinates x2 + y2 = r2 (where r is the
radius). In polar coordinate, x = r cos θ, y = r sin θ, so the function becomes

xy√
x2 + y2

=
(r cos θ)(r sin θ)√

r2

=
r2 cos θ sin θ

r
= r cos θ sin θ.

Now the condition (x, y)→ (0, 0) expressed in polar coordinates is r → 0. Thus,

lim
(x,y)→(0,0)

xy√
x2 + y2

= lim
r→0

(r cos θ sin θ).

Now sin θ and cos θ are both bounded in absolute value by 1: | sin θ| ≤ 1, | cos θ| ≤
1. Therefore

|r cos θ sin θ| = r| cos θ| · | sin θ| ≤ r · 1 · 1 = r.

Thus,
0 ≤ |r cos θ sin θ| ≤ r.

Therefore, by the squeeze theorem, as r → 0, the function r cos θ sin θ will go to
0:

lim
r→0

(r cos θ sin θ) = 0.

Thus,

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0.

Second Method. Observe that

|x| =
√
x2 ≤

√
x2 + y2

and
|y| =

√
y2 ≤

√
x2 + y2.
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Hence,

|xy| = |x| · |y| ≤
√
x2 + y2

√
x2 + y2 = x2 + y2.

Therefore, ∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ =
|xy|√
x2 + y2

≤ x2 + y2√
x2 + y2

=
√
x2 + y2,

so

0 ≤

∣∣∣∣∣ xy√
x2 + y2

∣∣∣∣∣ ≤√x2 + y2.

Since
lim

(x,y)→(0,0)

√
x2 + y2 =

√
02 + 02 = 0

(since
√
x2 + y2 is continuous), it follows by the squeeze theorem that

lim
(x,y)→(0,0)

xy√
x2 + y2

= 0,

as with the first method.

5

Remember that r2 = x2 + y2, where r is the distance from the origin to the
point (x, y). Therefore, if a function only depends on x2 + y2, its graph will
have radial symmetry, meaning it will look the same when rotated around the
vertical axis (z-axis) by any angle. Looking at the five graphs, we see that only
the second and third graphs have this symmetry. Looking at the five functions,
we see that only g(x, y) = cos(x2 + y2) (choice (A)) and g(x, y) = (x2 + y2)1/4

(choice (C)) depend only on x2 + y2. Specifically, we can write

cos(x2 + y2) = cos(r2)

and
(x2 + y2)1/4 = (r2)1/4 =

√
r.

Therefore, (A) and (C) must be matched with graphs 2 and 3 in some order.
Now cos(r2) oscillates repeatedly between 1 and -1 as r goes from 0 to∞; there-
fore its graph must be “going up and down” like a wave. Clearly, among graphs
2 and 3, only graph 2 has this behavior; therefore (A) must be matched with
graph 2. Hence, by process of elimination, (C) must go with graph 3.

Alternatively, we could note that the graph of
√
r must look like the graph

of the ordinary square-root function rotated around the vertical axis; clearly,
among graphs 2 and 3, only graph 3 looks like this. So graph 3 goes with (C),
and by elimination graph 2 must go with (A).
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Now we are left with three graphs and functions. For (E), note that if we
fix one variable (say x) and let the other variable (y) vary, then the function
cos(x) cos(y) will oscillate repeatedly. Since this works for either variable, the
graph of cos(x) cos(y) must oscillate up and down in both the x direction and
the y direction. Clearly the last graph (graph 5) is the only one of the remaining
three graphs with this behavior, so it must go with (E).

Now we are left with the functions g(x, y) = |x|1/2 and g(x, y) = x+y2. For any
fixed value of x, say x = c, the corresponding vertical trace of g(x, y) = x+ y2

in the plane x = c is the graph of the function of y defined by f(y) = c2 + y2,
which is a parabola. Among the remaining graphs (graphs 1 and 4), only graph
4 has vertical traces that look like parabolas†. Hence, (B) must go with graph
4. By elimination, (D) must go with graph 1.

Alternatively, we could note that for any fixed value of y, say y = c, the corre-
sponding vertical trace of g(x, y) = |x|1/2 in the plane y = c is the graph of the
function f(x) = |x|1/2, which has a “cusp” at x = 0. Among graphs 1 and 4,
only graph 1 has vertical traces which look like this, so it must go with (D).

Thus, the answer is:

• (A) ↔ graph 2

• (B) ↔ graph 4

• (C) ↔ graph 3

• (D) ↔ graph 1

• (E) ↔ graph 5

†Note. It may seem like graph 1 has vertical traces that are parabolas. However,
these are “sideways” parabolas, unlike the the graph of f(y) = c2 + y2, which is
a parabola opening “upwards” (i.e. a parabola with a vertical axis), as in graph
4. Moreover, the vertical traces of graph 1 are not really full parabolas, but just
“halves” of parabolas, as opposed to the graph of f(y) = c2 + y2, which is an
ordinary, full parabola.
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