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1. Multiple Choice. (2 points each) Circle the correct answer. You do not need to
justify your answer, and no partial credit will be given.

(i) The infinite series
∞∑
n=0

2n

n!

(a) converges to e2

(b) converges to e1/2

(c) converges to 2

(d) diverges to infinity

(e) None of the above.

(ii) The interval of convergence of the power series
∞∑
n=1

n(x− 1)n is

(a) {1}

(b) (−1, 1)

(c) [−1, 1)

(d) (0, 2)

(e) [0, 2)

(f) None of the above.

(iii) If {an} is a divergent sequence, then:

(a) {an} is bounded

(b) {an} is unbounded

(c) {an} is monotonic

(d) { 1
an
} converges

(e) None of the above need to be true.



(iv) For p > 1, the alternating p-series
∞∑
n=1

(−1)n

np

(a) converges absolutely

(b) converges conditionally

(c) diverges to infinity

(d) diverges, but not to infinity

(v) If {an} is a sequence of positive numbers such that lim
n→∞

an = 0, then

(a)
∞∑
n=1

(−1)nan must converge absolutely

(b)
∞∑
n=1

(−1)nan must converge conditionally

(c)
∞∑
n=1

(−1)nan must converge, but we can’t say if it does so absolutely or conditionally

(d)
∞∑
n=1

(−1)nan must diverge

(e)
∞∑
n=1

(−1)nan may converge or diverge.



2. Multiple Choice. (2 points each) You do not need to justify your answer, and no
partial credit will be given.

Write a letter (a-j) in each box, indicating the Maclaurin series that corresponds to the
function f(x):

(i) f(x) = x sinx h

(ii) f(x) = x cosx f

(iii) f(x) = tan−1(x2) e

(iv) f(x) =
1

1 + x2
a

(v) f(x) =
1

(1 + x)2
b

You can choose from:

(a)
∞∑
n=0

(−1)nx2n ;

(b)
∞∑
n=0

(−1)n(n+ 1)xn ;

(c)
∞∑
n=0

(−1)n
xn

n!
;

(d)
∞∑
n=0

(−1)n
x4n+1

4n+ 1
;

(e)
∞∑
n=0

(−1)n
x4n+2

2n+ 1
;

(f)
∞∑
n=0

(−1)n
x2n+1

(2n)!
;

(g)
∞∑
n=0

(−1)n
x2n+1

(2n+ 2)!
;

(h)
∞∑
n=0

(−1)n
x2n+2

(2n+ 1)!
;

(i)
∞∑
n=0

(−1)n
x2n+2

(2n+ 2)!
;

(j) None of these.



3. Evaluate the following limits:

(a) (5 points)

lim
x→3

√
1 + x− 2

x− 3

(b) (5 points)

lim
x→∞

(
1− 1

x

)x2
Solution. (a) Using l’Hopital:

lim
x→3

√
1 + x− 2

x− 3
= lim

x→3

1
2
√
1+x

1
=

1

2
√

4
=

1

4

(b) Let f(x) = (1− 1/x)x
2
. Then ln f(x) = x2 ln(1− 1/x).

lim
x→∞

ln f(x) = lim
x→∞

ln(1− 1
x
)

1
x2

= (by l’Hopital) lim
x→∞

1/x2

1− 1
x

−2/x3
= lim

x→∞
−x− 1

2
= −∞

so

lim
x→∞

f(x) = elimx→∞ lnf(x) = e−∞ = 0.



4. (10 points) Evaluate the integral ∫
(lnx)2 dx

Solution. Substitute u = lnx so x = eu, dx = eudu. Then:

∫
(lnx)2 dx =

∫
u2eudu

Using integration by parts twice, we get

∫
u2eudu = u2eu −

∫
2ueudu = u2eu − 2ueu +

∫
2eudu =

u2eu − 2ueu + 2eu + C = (lnx)2x− 2x lnx+ 2x+ C.



5. (a) (5 points) Find the third Taylor polynomial T3(x) centered at 1 for the function
f(x) =

√
x.

(b) (5 points) Estimate the error |
√

1.2 − T3(1.2)|. (You do not need to simplify your
answer.)

Solution. (a) We have

f ′(x) = (1/2)x−1/2, f ′′(x) = (1/2)(−1/2)x−3/2, f ′′′(x) = (1/2)(−1/2)(−3/2)x−5/2

The values at x = 1 are

f(1) = 1, f ′(1) = 1/2, f ′′(1) = −1/4, f ′′′(x) = 3/8.

Hence

T3(x) = 1 +
1/2

1!
(x− 1) +

−1/4

2!
(x− 1)2 +

3/8

3!
(x− 1)3

= 1 +
1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3.

(b) |f (4)(x)| = |(1/2)(−1/2)(−3/2)(−5/2)x−7/2| = |(15/16)x−7/2|. The maximum value of
this on the interval [1, 1.2] is K4 = 15/16, so by the error bound for Taylor polynomials:

|
√

1.2− T3(1.2)| ≤ K4(.2)4

4!
=

15

16 · 24 · 54
.



6. (10 points) Consider the half-circle S given by x2 + (y − 4)2 = 1 and y ≥ 4. Find the
area of the surface of revolution obtained by rotating S around the x-axis.

Solution. We use the formula

S = 2π

∫ b

a

f(x)
√

1 + (f ′(x))2dx

for f(x) = 4 +
√

1− x2 and a = −1, b = 1. Note that f ′(x) = −x/
√

1− x2 so

√
1 + (f ′(x))2 =

√
1 +

x2

1− x2
=

1√
1− x2

.

Therefore,

S = 2π

∫ 1

−1
(4 +

√
1− x2) · 1√

1− x2
dx = 2π(2 + 4

∫ 1

−1

dx√
1− x2

)

Using the substitution x = sin θ we get

S = 4π + 8π

∫ π/2

−π/2

cos θ

cos θ
dθ = 4π + 8π2.



7. (10 points) Does the improper integral∫ 1

0

dx

x7 + x

converge or diverge? Justify your answer carefully.

Solution. For x ∈ (0, 1) we have x7 ≤ x so x7 + x ≤ 2x. Therefore,∫ 1

0

dx

x7 + x
≥
∫ 1

0

dx

2x

The latter integral diverges by the p-test with p = 1. Hence, the original integral diverges
as well, using the comparison test.



8. (5 points each) Do the infinite series

(a)
∞∑
n=1

1

n lnn+ 1

(b)
∞∑
n=1

(2n+
√
n

n+ 2
√
n

)n

converge or diverge? Justify your answers carefully.

Solution. (a) Use the limit comparison test with an = 1/(n lnn+ 1) and bn = 1/(n lnn).
Since limn→∞ an/bn = 1, it suffices to study the convergence of

∑
1/(n lnn). By the integral

test, this is the same question as the convergence of the following improper integral, which
can be evaluated using the substitution eu = x:

∫ ∞
a

dx

x lnx
=

∫ ∞
ln a

eudu

euu
=

∫ ∞
ln a

du

u

This diverges. Therefore, the series diverges.

(b) Use the Root Test:

lim
n→∞

(2n+
√
n

n+ 2
√
n

)
= 2 > 1

so the series diverges.



9. (5 points each) Evaluate the infinite series

(a)
∞∑
n=2

(−2)n + 1

3n

(b)
∞∑
n=2

1

(n− 1)(n+ 1)

Solution. (a) Use the formula for geometric series:

∞∑
n=2

(−2)n + 1

3n
=
(−2

3

)2 ∞∑
n=0

(−2/3)n+
(1

3

)2 ∞∑
n=0

(1/3)n =
4

9
· 1

1− −2
3

+
1

9
· 1

1− 1
3

=
4

15
+

1

6
=

13

30

(b) Use the partial fractions decomposition

1

(n− 1)(n+ 1)
=

1

2

( 1

n− 1
− 1

n+ 1

)
and then telescoping:

∞∑
n=2

1

(n− 1)(n+ 1)
= lim

N→∞

∞∑
n=2

1

(n− 1)(n+ 1)

= lim
N→∞

1

2

(1

1
−

�
�
�1

3
+

1

2
−

�
�
�1

4
+

�
�
�1

3
−

�
�
�1

5
+ · · ·+

�
�
��1

N − 2
− 1

N
+

�
�
��1

N − 1
− 1

N + 1

)
=

1

2
lim
N→∞

(1

1
+

1

2
− 1

N
− 1

N + 1

)
=

1

2

(1

1
+

1

2

)
=

3

4
.



10. (a) (6 points) Find a power series F (x) =
∞∑
n=0

anx
n satisfying the differential equation

F ′′ = −F , with initial conditions F (0) = 1, F ′(0) = 1.

(b) (3 points) For what values of x does the series F (x) converge? Justify your answer.

(c) (1 point) Write the function F (x) in closed form—that is, as a simple expression such
as x tan−1(x), cos(x2), etc.

Solution.

(a) We have

F (x) = a0 + a1x+ a2x
2 + a3x

3 + · · ·+ anx
n + . . .

F ′(x) = a1 + 2a2x+ 3a3x
2 + · · ·+ nanx

n−1 + . . .

F ′′(x) = 2a2 + 3 · 2a3x+ · · ·+ n(n− 1)anx
n−2 + . . .

The initial conditions become a0 = F (0) = 1, a1 = F ′(0) = 1. Equating coefficients in
F = −F ′′ we get an−2 = −n(n− 1)an so

a0 = 1, a2 = − 1

1 · 2
, a4 =

1

1 · 2 · 3 · 4
, . . . , a2n = (−1)n

1

(2n)!

a1 = 1, a3 = − 1

2 · 3
, a5 =

1

2 · 3 · 4 · 5
, . . . , a2n+1 = (−1)n

1

(2n+ 1)!

We get

F (x) =
∞∑
n=0

(−1)n
x2n

(2n)!
+
∞∑
n=0

(−1)n
x2n+1

(2n+ 1)!

(b) The general term in F (x) can be written as ±xn

n!
. By the ratio test (where the sign

doesn’t matter since we take absolute values)

lim
n→∞

|xn+1/(n+ 1)!|
|xn/n!|

= lim
n→∞

|x|
n+ 1

= 0

for all x, so F (x) converges for all x.

(c) F (x) = sinx+ cosx.


