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1 Consider the 36~0uti:0me space of the results of threwmg two .
dice.

Let X = the number the first die shows and Y— the mumber the -

second die shows.

(A) Are X and Y independent random variables? Explain in

detail why or why not.
(B) IfZ=X+Y, are X and Z independent random varizbles?

Explain why or why not carcﬁliy(by actually computing

some probabilities).
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2 (A) Explain what the Bernoulli random variable with probability

p ,0< p< 1, is and calculate its expected value and variance.

(B) State the theorems on the expected value of the sum of random -~
variables and the variance of the sum of independent random

variables. .

(C) Explain how paris A and B together enable one to calculate

easily the expected value of the binomial distribution of n trials

with probability p for success in each trial(i.e. the distribution § q N

problem 5). i
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3 Five cards are dealt from a standard 52 card deck. ~

{A) What is the probability that four of them are of a single suit
and the fifth is a different suit? Explain your reasoning carefully
~how you got the answer. (The answer can be written in terms of
binomial coefficients and so on—a numerical calculation is not
necessary) | '

(B) What is the probability that four are of the same suit, the fifth
not, and the four of the same scutare alI between 2 and 10 in rank.
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4 A die is weighted so that it comes up 6 half the time(probability B e
1/2) and the other values 1.2.3 4,5 each come up with probability '
Iﬂﬁ.TWDmmxﬁhdmemﬁﬂwwﬁ@mﬂdkampmﬁmmdaﬂ

one is chosen at random. The randomly chosen one is thrown

three times and comes up a 6 each of the three times. What is the

probability that the randomly chosen die is actually the weighted
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5 (A) Define the binomial distribution with probability p, n trials
,0<p<l. and show that it really is a probability distribution(i.e., that
the sum of all the probabilities is 1)

(B) When p= 1/2 , the binomial distribution is a representation of
the probability of k heads 1A n coin tosses. If a coin is tossed 10
times, what is the probability that three or fewer heads occur in the
10 tosses? What is the probability that exactly 5 heads occur?

(C) What is the probability that there are more heads than tails in
the ten tosses? |




