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1. (20 points) This problem has parts (a)-(d) Let w = f(z) be the Möbius transform that
sends the three points 0,1,-1 to 0,1,∞ respectively.

(a) (5 points) Find an explicit formula for f . Verify that f(0) = 0, f(1) = 1, and f(−1) =∞.

(b) (5 points) Find the image of {z ∈ C : |z| < 1} under f .

(c) (5 points) Compute f−1(i).

(d) (5 points) Classify the singularity of f at −1.
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2. (15 points) This problem has parts (a)-(c). Consider the function f = u+ iv, where

u(x+ iy) = x2 + 2xy + y2, v(x+ iy) = x2 − 2xy − y2.

(a) (5 points) Where is f complex differentiable? Where is f analytic?

(b) (5 points) Does there exist an entire function g whose real par is equal to u? If so, give
an example of such a function.

(c) (5 points) Does there exist an entire function h whose imaginary part is equal to v? If so
give an example of such a function.
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3. (15 points) This problem has parts (a)-(c).

(a) (5 points) What are all the possible values of the multi-valued function log(i − z) can
take when z = 1?

(b) (5 points) Let f(z) be the principal branch of log(i− z). Where if f analytic?

(c) (5 points) Find a branch of log(i− z) which takes the value of 1
2

ln 2− 5πi
4

at z = 1.
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4. (10 points) Suppose f is an entire funciton and M is a positive number such that |f(z)| >
M for all z ∈ C. Prove that f must be a constant function. (Hint: look at the reciprocal of
f .)
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5. (20 points) This problem has parts (a) and (b). Let f be the function f(z) = 1
z3(z+1)

.

(a) (10 points) Find all the Laurent series expansions of f(z) around z0 = 0, and state the
regions in which each expansion is valid.

(b) (10 points) Classify the singularities of f in the complex plane, and compute the residues
at these singularities.
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6. (20 points) This problem has parts (a)-(d).Classify the zero or singularity of hte following
funcitons at the indicated point(s). If it is a singularity, then compute its residue.

(a) (5 points) cos z
2z−π at z = −π

2
.

(b) (5 points) e1/z(1− z) at z = 0.

(c) (5 points ) Log2z
(z−1)ez

at z = 1.

(d) (5 points) z2+1
z3−z5 at z = 0.
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7. (10 points) This problem has parts (a), (b) and (c). Let Γ be the contour traversing the
circle |z| = 2 twice in the counter-clockwise direction.

(a) (5 points) Find a parameterization of Γ.

(b) (5 points) Compute
∫

Γ
|z| dz.

(c) (5 points) Compute
∫

Γ
z+ez

z(z−4)
dz
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8. (15 points) This question has parts (a), (b), and (c). Let Γ1, Γ2, and Γ3 be parameterized
by

z1(t) = (1 + i)t, 0 ≤ t ≤ 2

z2(t) = (1− i)t, 0 ≤ t ≤ 2

z3(t) = 2 + it, −2 ≤ t ≤ 2

(a) (5 points) Sketch Γ1, Γ2, and Γ3 in the complex plane.

(b) (5 points) Let f be a continuous function, not identically zero, in the complex plane.
Give sufficient conditions to ensure that

∫
Γ1
f(z) dz −

∫
Γ2
f(z) dz −

∫
Γ3
f(z) dz = 0.

(c) (5 points) Let f(z) = 1
z−1

. Compute
∫

Γ1
f(z) dz −

∫
Γ2
f(z) dz −

∫
Γ3
f(z) dz = 0.
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9. (10 points) This problem has parts (a)and(b). Let γ the contour that traverses the line
segment from 1− i

2
to 1 + i

2
once in the upward direction.

(a) (5 points) Find a branch of the mulit-valued function log(2z − 1) which is analytic in a
domain tha contains γ.

(b) (5 points) Based on your answer to (a), or otherwise, evaluate the contour integral,∫
γ

2
2z−1

dz
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10. (15 points) Let Γ be the circle {z ∈ C : |z| = 10}, traversed once in the counter-clockwise
direction.

(a) (5 points) Compute
∫

Γ
ez

2

(2z−1)2
dz.

(b) (5 points) Compute
∫

Γ
sin z

(z−1)(z−3)
dz.

(c) (5 points) Estimate the size of the integral,
∫

Γ
eiRe(z)

z2
dz.
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11. (15 points) Let f be the power series,

f(z) =
∞∑
n=0

(n+ 1)
(z − 1)n

2n

(a) (5 points) Find the disk of convergence of this power series.

(b) (5 points) Find a power series expansion for 2
3−z around the point z0 = 1. Where does

this power series converge?

(c) (5 points) Based on your answer to (b), or otherwise, find a closed form expression for f .
(Hint: use differention.)
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