
Syllabus for Math 132 up to the first hour exam

Section 1.1: This section introduces complex numbers. Pay attention to: wz = w z,
|wz| = |w||z|, the polar form of a complex number (and its usefulness in solving
zn = a), and the relation: Re{wz} equals the dot product of w and z, considered
as vectors.

Section 1.2: Typical results here are: |z − a| = |z − b| defines the straight line
through (a + b)/2 perpendicular to b − a, z = (1 − t)a + tb, t ∈ [0, 1], is the line
segment going from a to b, and |z − a| = ρ|z − b| defines a circle when ρ ̸= 1.

Section 1.3: This section defines open, closed, connected and convex sets in the
plane. Most of the time we will want functions to be defined on open, connected
sets. Fisher calls those sets “domains”.

Section 1.4: This section defines limn→∞ an and
∑∞

n=1 an for a sequence of complex
numbers {an}∞n=1. It also defines limz→z0 f(z) and continuity at z = z0 for a
function f(z).

Those four sections were preliminary, but you need to know all the definitions.
The following three have most of the content of the course so far.

Section 1.5: Everything is this section is based on ez = ex+iy = ex(cos y + i sin y),

and the identity ez+w = ewez. ez can also be defined as
∑∞

z=0
zn

n! , but that will come

later. Since ez = ez+2πi, ez cannot be one-to-one on any domain large enough to
contain both z and z+2πi, and it does not have an inverse defined on C. However,
ez restricted to the open strip −π < y < π is one-to one, and it maps the strip
onto the plane minus the closed negative real axis. When z = reiθ with r > 0 and
−π < θ < π, Log z is defined by Log z = ln r + iθ, and z = Log w is the unique
solution to ez = w with z in the strip above. In other words Log is the inverse
function for ez restricted to the strip.

Using ez, one defines cos z = 1
2 (e

iz + e−iz) and sin z = 1
2i (e

iz − e−iz). Note that
ez, cos z and sin z all become the familiar functions ex, cosx and sinx for z on the
real axis. In that sense they are extensions of those functions to the complex plane.
sin z maps the vertical strip −π/2 < x < π/2 one-to-one onto the plane minus the
two slits on the real axis defined by |x| ≥ 1, and cos z maps the the vertical strip
0 < x < π one-to-one onto the plane minus the same two slits. So sin z and cos z
restricted to the strips have inverse functions defined on the plane minus the slits.

Section 1.6: Part I, Line Integrals. Be sure that you understand the computation of
the line integral

∫
C
f(z)dz, where C is a curve in the complex plane. Reversing the

direction that C is traced multiplies
∫
C
f(z)dz by -1, but other than that,

∫
C
f(z)dz

does not depend on the parametrization: one can always use arc-length along C
to get a parametrization z(s), 0 ≤ s ≤ L, where L is the length of C. If w(t),
a ≤ t ≤ b, also traces C, then the function s(t) is defined by w(t) = z(s(t)) and
satisfies s(a) = 0 and s(b) = L. Then, just by the chain rule for differentiation,
followed by change of variables formula for integrals, you get

∫
C

f(z)dz (computed using w(t)) =

∫ b

a

f(w(t))
dw

dt
(t)dt
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=

∫ b

a

f(z(s(t))
dz

ds
(s(t))

ds

dt
(t)dt

=

∫ L

0

f(z(s))
dz

ds
(s)ds =

∫
C

f(z)dz (computed using z(s)).

Fisher derives the following useful lemma: if f is a continuous function defined
for |z − a| < δ, and C(ϵ) is the circle traced by z = a+ ϵeit, 0 ≤ t < 2π, then

lim
ϵ→0

∫
C(ϵ)

f(z)

z − a
dz = 2πif(a). (1)

This section also contains the basic estimate |
∫
C
f(z)dz| ≤ ML where M is the

maximum value of |f(z)| on C and L is the length of C.
Part II, Green’s Theorem. Know the statement of Green’s Theorem and the proof
of the following corollary: Assume that u and v are real-valued functions with
continuous partial derivatives in the domain D. If Γ is the boundary of D traced
so that D is on the left as you follow Γ, then∫

Γ

(u+ iv)(dx+ idy) = −
∫
D

(
∂v

∂x
+

∂u

∂y
)dxdy + i

∫
D

(
∂u

∂x
− ∂v

∂y
)dxdy. (2)

Section 2.1: The definition of the complex derivative f ′(z) = limh→0
f(z+h)−f(z)

h is
here. Please remember the following theorem: If u(x, y) and v(x, y) are differen-
tiable functions of (x, y), then the complex derivative of f = u + iv exists if and
only if u and v satisfy the Cauchy-Riemann equations, ∂u

∂x = ∂v
∂y and ∂u

∂y = − ∂v
∂x ,

and f ′ is given by

f ′(x+ iy) =
∂u

∂x
(x, y) + i

∂v

∂x
(x, y) =

1

i
(
∂u

∂y
(x, y) + i

∂v

∂y
(x, y)).

Assuming that u and v have continuous partial derivatives in a domain with
boundary Γ and satisfy the Cauchy-Riemann equations, you can combine (1) and
(2) to get “The Cauchy Integral formula” for f = u+ iv

f(z) =
1

2πi

∫
Γ

f(w)

w − z
dw.

This will be very important in the rest of the course, but will not be used in this
first hour exam.

Functions which have complex derivatives at all points of a connected, open set D
in the plane are called “analytic” functions on the domain D. When functions have
complex derivatives, all the usual rules of differentiation hold: (f + g)′ = f ′ + g′,
(fg)′ = gf ′ + fg′, (f/g)′ = (gf ′ − fg′)/g2 and (f(g))′(z) = f ′(g(z))g′(z).

If u and v satisfy the Cauchy-Riemann equations in a domain D, there are the
following consequences:

(a) Both u and v are “harmonic” in D: ∂2u
∂x2 + ∂2u

∂y2 = 0 and ∂2v
∂x2 + ∂2v

∂y2 = 0 in D.

Strictly speaking this requires that u and v have second partial derivatives, but we
will see that, as soon as u+ iv is analytic in D, u and v have derivatives of all orders
in D.

(b) The function u determines the gradient of v, and hence determines v up to an
additive constant. Likewise v determines the gradient of u, and hence determines
u up to an additive constant. u and v are called “conjugate harmonic functions”.


