
Math 132 Complex Analysis for Applications Midterm II Solution

Name:

SID#:

Directions:

Do not open this exam until the professor instructs you to do so.

Turn off your pagers and cell-phones.

You have 50 minutes to complete the midterm exam.

When instructed to begin, solve the following problems in the space provided.

Be sure to justify any claims you make.

You may cite without proof any facts that were either assigned as homework problems or covered in lecture
unless the facts are explicitly stated as midterm problems.

You may not consult any books, notes, exams, quizzes, students, computers, pagers, cell phones, or any
other aids during the exam.

Be sure to put your SID # on the top right corner of every page.

Relax. Do the best you can. Think before you write. Write neatly.

Points Possible Points
Problem 1 10 10

Problem 2 10 10

Problem 3 10 10

Problem 4 10 10

Problem 5 10 10

Total Score: 50 50



1. (a) Consider the following closed contour ∂D made up of paths γ1, γ2, and γ3.

0

1 + ii

D
γ1

γ2

γ3

Let dz = dx+ idy. Evaluate the following integral using any method.∫
∂D

Im z dz

Solution.

Im z dz = y(dx+ idy) = ydx+ iydy

Thus by Green’s Theorem, ∫
∂D

Im z dz =

∫
∂D

ydx+ iydy

=

∫∫
D

(
∂(iy)

∂x
− ∂y

∂y

)
dxdy

=

∫∫
D

(0− 1)dxdy

= −
∫∫

D

dxdy

= −Area(D)

= −1

2

Alternatively, parametrize ∂D by

γ1(t) = t(i+ 1) for 0 ≤ t ≤ 1

γ2(t) = (i+ 1)− t for 0 ≤ t ≤ 1

γ3(t) = (1− t)i for 0 ≤ t ≤ 1

Thus ∫
∂D

Im z dz =

∫
γ1

Im z dz +

∫
γ2

Im z dz +

∫
γ3

Im z dz

=

∫ 1

0

t(1 + i)dt+

∫ 1

0

1(−1)dt+

∫ 1

0

(1− t)(−i)dt

= (1 + i)
t2

2

∣∣∣∣1
0

+ (−1)t|10 + (−i)
(
t− t2

2

)∣∣∣∣1
0

=
1 + i

2
− 1− i

2

= −1

2



(b) Is the the differential Im z dz exact, closed, or neither on C? Explain.

Solution. Since Im z is continuously (real) differentiable on the star shaped domain C, exact is
equivalent to closed. It is not closed on C since it is not analytic on C. Alternatively, by definition,
it is not closed on C since (

∂(iy)

∂x
− ∂y

∂y

)
= −1 6= 0

It is not exact on C since exact implies closed. Alternatively, we showed that the integral in (a)
is nonzero and hence not path independent on ∂D. Hence, not exact.

2. Evaluate the following integrals.

(a)
1

2πi

∮
|z−1|= 1

2

√
z dz where

√
z = e

1
2 Log(z) is the principal square root on C\(−∞, 0].

Solution. As the picture suggests,
√
z is analytic on |z − 1| ≤ 1

2 :

11
2

.
0

Thus, ∮
|z−1|= 1

2

√
z dz = 0

by Cauchy’s Theorem or by the Fundamental Theorem of Calculus for Analytic Functions:∮
|z−1|= 1

2

√
z dz =

∫ 1
2

1
2

√
z dz =

2

3
z

3
2

∣∣∣∣ 12
1
2

= 0

(b)
1

2πi

∮
|z|=3

e2z

z − 1
dz

Solution. By the Residue Therorem or by Cauchy’s Integral Formula,

1

2πi

∮
|z|=3

e2z

z − 1
dz = e2



3. (a) Use power series to find a complex antiderivative F (z) of the following function.

f(z) =
z

ez

Solution. For all z, we have

e−z =

∞∑
n=0

(−z)n

n!
= 1 + (−z) +

(−z)2

2!
+

(−z)3

3!
+

(−z)4

4!
· · ·

ze−z = z

[ ∞∑
n=0

(−z)n

n!

]
= z − z2 +

z3

2!
− z4

3!
+
z5

4!
+ · · ·

Thus f has the following Taylor expansion about 0:

f(z) = ze−z =

∞∑
n=0

(−1)nzn+1

n!

Therefore

F (z) =

∫ z

0

we−wdw

=

∫ z

0

∞∑
n=0

(−1)nwn+1

n!
dw

=

∞∑
n=0

∫ z

0

(−1)nwn+1

n!
dw

=

∞∑
n=0

(−1)nzn+2

(n+ 2)n!

=

∞∑
n=2

(−1)nzn

n(n− 2)!

(b) What is the radius of convergence of the Taylor series centered at 0 for F (z)? Explain.

Solution. The radius of convergence R =∞ since integrating a power series does not change its
radius of convergence and ze−z has R =∞.

Alternatively,

lim
n→∞

∣∣∣∣ (−1)n+1

(n+ 1)(n− 1)!

n(n− 2)!

(−1)n

∣∣∣∣ = lim
n→∞

∣∣∣∣ n

(n+ 1)(n− 1)

∣∣∣∣ = 0

Thus R =∞.



4. Determine whether the following isolated singularities at z0 are removable, poles, or essential. To
receive full credit, be sure to justify your answer. If a pole, be sure to also specify its order.

(a) sin

(
1

z

)
, z0 = 0

Solution. Since the Laurent series expansion for 0 < |z| <∞ is

sin

(
1

z

)
=

∞∑
n=0

(−1)nz−2n−1

(2n+ 1)!
=

0∑
n=−∞

(−1)nz2n−1

(−2n+ 1)!

we see that 0 is an essential singularity since an = (−1)n

(−2n+1)! 6= 0 for infinitely many n < 0 (all of them).

(b) 2z2 + 1, z0 =∞

Solution. Since

g(w) = f(w−1) =
2

w2
+ 1

has a double pole at w = 0 (by the Laurent expansion you see above for g(w) on 0 < |w| <∞), we see
that f(z) has a double pole at ∞.

(c)
ez − 1

z
, z0 = 0

Solution. Since

ez − 1 = −1 + 1 + z +
z2

2!
+ · · · = z +

z2

2!
+O(z3)

ez − 1

z
= 1 + z +

z

2!
+O(z2)

we see that

lim
z→0

ez − 1

z
= 1

Thus
ez − 1

z

is bounded near 0. Thus 0 is a removable singularity by Riemann’s Removable Singularities Theorem.



5. Use Residue Theory and a semicircular contour to show∫ ∞
−∞

dx

(x2 + 1)(x2 + 4)
=
π

6

Solution. Consider the semicircular contour ΓR:

The contour ΓR

×i

×2i

<

>
R−R

γ2
R

γ1
R

The function

f(z) =
1

(z2 + 1)(z2 + 4)
=

1

(z + i)(z − i)(z + 2i)(z − 2i))
=

1

z4 + 5z2 + 4

has simple poles at i, 2i inside ΓR. The other two poles −i and −2i are in the lower half plane and
thus outside the contour. Thus for large R > 2, we have by the Residue Theorem:∫

ΓR

f(z)dz = 2πi [Res [f(z), i] + Res [f(z), 2i] ]

and by Rule 3 (Rule 4)

Res [f(z), i] =
1

4z3 + 10z

∣∣∣∣
z=i

=
1

4i3 + 10i
=

1

6i

Res [f(z),−i] =
1

4z3 + 10z

∣∣∣∣
z=2i

=
1

4(2i)3 + 20i
=

1

−32i+ 20i
=
−1

12i

By an ML estimate, on γ2
R, we have |z| = R and thus∣∣∣∣∣

∫
γ2
R

1

z2 + 1z2 + 4
dz

∣∣∣∣∣ ≤ 1

(R2 − 1)(R2 − 4)
πR→ 0 as R→∞

Therefore for all R > 2∫ R

−R

dx

(x2 + 1)(x2 + 4)
+

∫
γ2
R

dz

z2 + 1z2 + 4
= 2πi

[
1

6i
− 1

12i

]
=
π

6

and taking limits as R→∞, we have∫ ∞
−∞

dx

(x2 + 1)(x2 + 4)
+ 0 =

π

6


