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1. Compute the following. If your answer is a complex number, give it
in either Cartesian or polar coordinates. If the answer is multi-valued
give all possible values. (Total: 6 points)

(a) arg

(
1 + 5i

3 + 2i

)
= . . .

Solution: First we can compute

1 + 5i

3 + 2i
=

1 + 5i

3 + 2i

3− 2i

3− 2i
=

13 + 13i

13
= 1 + i.

Then we see that arg
(

1+5i
3+2i

)
= arg(1 + i) = {π4 + 2πk : k ∈ Z}.

Some of you took another route:

arg

(
1 + 5i

3 + 2i

)
= arg (1 + 5i)− arg (3 + 2i)

= {arctan(5)− arctan(2/3) + 2πk : k ∈ Z}.

This is correct, of course, but less informative, because it doesn’t
give the angles explicitly.

(b) Find all complex numbers z which satisfy z5 = 1 + i.

Solution: If we write in polar coordinates z = reiθ and i + 1 =√
2ei(π/4+2πk), for k ∈ Z, then the equation becomes

r5ei5θ =
√

2ei(π/4+2πk).

Hence r = 10
√

2 and θ = 1
5(π4 +2πk) for k ∈ Z. However, there are

only five different values for k that give different answers. After
that we get repetitions, because ei2π = 1. So the five roots we
get, are

z1 =
10
√

2eiπ/20, z2 =
10
√

2ei9π/20, z3 =
10
√

2ei17π/20,

z4 =
10
√

2ei25π/20, z5 =
10
√

2ei33π/20.

(c) 2 cos
(
5 log(3i)

)
− (3i)5i = . . .

Solution: I realized too late that there are at least two different
interpretations of the addition of multi-valued ‘functions’ you can
apply here. The question is ambiguous, so I have given full points
to any solution that showed insight in what was going on.

From the definitions of the complex cosine and the complex power
function we have

2 cos(5 log 3i) = ei5 log 3i + e−i5 log 3i,

(3i)5i = e5i log 3i.
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(First interpretation.) We have

2 cos(5 log 3i)− (3i)5i = ei5 log 3i + e−i5 log 3i − e5i log 3i = e−5i log 3i.

By the definition of the complex logarithm, we have, for k ∈ Z

2 cos(5 log 3i)− (3i)5i = e−i5 log 3i = e−i5(log 3+iπ/2+i2πk)

= e5π/2+10πke−i5 log 3.

(Second interpretation.) We have, for k, l,m ∈ Z,

2 cos(5 log 3i)− (3i)5i = ei5(log 3+iπ/2+i2πk) + e−i5(log 3+iπ/2+i2πl) − ei5(log 3+iπ/2+i2πm)

= e−5π/2(e−10πk − e−10πm)e5i log 3 + e5π/2+10πle−5i log 3.

Another reminder to be careful when working with multi-valued
‘functions’. If you are interested in reading more about these
kinds of problems with multi-valued ‘functions’, I came across an
interesting article here:
http://www.researchgate.net/publication/
221352271 The Challenges of Multivalued Functions
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2. Consider the three-dimensional unit sphere with the south pole at
(0, 0,−1) and the north pole at (0, 0, 1). Let (X,Y, Z) denote the
coordinates of points on the sphere. Determine the stereographic pro-
jection of the area on the sphere which satisfies 1

2 ≤ Z ≤
3
4 and sketch

it. Justify your answer and compute relevant lengths in your sketch.
(6 points)

Solution: The region on the sphere for which 1
2 ≤ Z ≤

3
4 is bounded

by two circles on the sphere. By the theorem in the book we know
that circles on the sphere project to either circles or lines in the plane.
Since the circles on the sphere do not go through the north pole, the
projections are circles in the plane (so not straight lines). By symmetry
the center of these circles is at the origin (0,0,0), so we only need to
compute the radii.

Let’s first consider the projection of the circle on the sphere with
Z = 3

4 . Let’s call the radius of that circle a and call the radius of the
projected circle, i.e., the one we want to compute, r. If we look at
the cross section of the sphere with the x− z plane, we can draw two
similar triangles: one with base of length r and height 1 (the radius of
the sphere) and the other with base of length a and height 1− 3

4 = 1
4 .

Because the triangles are similar, we know that x
a = 1

1/4 = 4. To
compute a, we note that a is the length of a leg of a right triangle,
whose other leg has length 3

4 and whose hypothenuse has length 1.

Thus

√(
3
4

)2
+ a2 = 1. Because a > 0, we find a =

√
7
16 and thus

x =
√

7.

We can make a similar picture for thee projection of the circle with

Z = 1
2 . In that case x

a = 1
1/2 = 2 and

√(
1
2

)2
+ a2 = 1, so a =

√
3
4 and

x =
√

3.

We conclude that the projection is an annulus in the x − y plane,
centered at the origin, with inner radius

√
3 and outer radius

√
7.

(I am going to be lazy, and will not produce the picture here.)
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3. (Total: 10 points)

(a) For a function f : C → C, give the definition of f ′(z) using the
difference quotient.

Solution: f ′(z) = lim
∆z→0

f(z+∆z)−f(z)
∆z .

(b) Use the definition from (a) to determine if the functions g(z) = z2

and h(z) = |z|2 are complex differentiable. If they are, compute
the derivatives using the definition.

Solution: For g we compute

(z + ∆z)2 − z2

∆z
=

2z∆z + (∆z)2

∆z
= 2z+∆z → 2z, as ∆z → 0.

Thus g is complex differentiable and g′(z) = 2z.

For h we compute

|z + ∆z|2 − |z|2

∆z
=
z∆z + z∆z + |∆z|2

∆z
= z + z

∆z

∆z
+ ∆z.

If we approach the origin via the real axis, i.e., we choose ∆z =
∆x ∈ R, then

z + z
∆z

∆z
+ ∆z = z + z + ∆x→ z + z, as ∆x→ 0.

However, if we approach via the imaginary axis, i.e., we choose
∆z = i∆y, for ∆y ∈ R, then

z + z
∆z

∆z
+ ∆z = z − z − i∆y → z − z, as ∆y → 0.

Both approaches lead to different values for the limit, so the limit
for ∆z → 0 does not exist and h is not differentiable.

(c) Reproduce your results from part (b) using the Cauchy-Riemann
equations.

Solution: If we write f(x + iy) = u(x, y) + iv(x, y), then the
Cauchy-Riemann equations are{

∂u
∂x = ∂v

∂y ,
∂u
∂y = − ∂v

∂x .
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If we check this for g(z) = z2 = (x + iy)2 = x2 − y2 + 2ixy, we
get

∂(x2 − y2)

∂x
= 2x =

∂(2xy)

∂y
and

∂(x2 − y2)

∂y
= −2y = −∂(2xy)

∂x
,

and thus g is complex differentiable and g′(x + iy) = ∂(x2−y2)
∂x +

i∂(2xy)
∂x = 2x+ i2y = 2z.

For h(z) = |z|2 = x2 + y2 we get

∂(x2 + y2)

∂x
= 2x 6= 0 =

∂(0)

∂y
,

so h is not complex differentiable.
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4. (Total: 8 points)

(a) Define a continuous branch of z 7→ log z on the slit plane
C \ {z ∈ C : Im (z) = Re (z) ≥ 0}.

Solution: We have

log z = log |z|+ iθ.

We now need to define a range of values θ can take, such that
the range starts and ends at the branch cut. So for example
θ ∈ (−7π

4 ,
π
4 ). Of course other choices with multiples of 2π added

to the endpoints of this interval work as well.

(b) Sketch the image of the vertical half line satisfying Re (z) = e and
Im (z) ≥ 0 (minus the point on the line where Re (z) = Im (z))
under the branch you defined in (a). Back up your sketch with a
computation.

Solution: I will use the branch I defined in (a), i.e., I choose
θ ∈ (−7π

4 ,
π
) . If you chose another range in (a), the computations

have to be adapted.

For points z on the specified vertical half line, we can write z =
e+ iy. That leads to

log z = log
√
e2 + y2 + iθ,

where θ ∈ (−7π
4 ,−

3π
2 ) ∪ (0, π4 ). Note that θ ranges over two

disjoint intervals, the first one corresponds to the part of the half
line that lies above the branch cut, the other one to the part
between the real axis and the branch cut.

For θ ∈ (0, π4 ) we can consider the right triangle with angle θ,

base of length e, and hypotenuse of length
√
e2 + y2. This shows

that √
e2 + y2 =

e

cos θ
.

Hence, for the range θ ∈ (0, π4 ) we find

log z = log(e/ cos θ) + iθ = 1− log(cos θ) + iθ.

For θ ∈ (−7π/4,−3π/2) we can do something similar, only now
we have that θ = ϕ− 2π, where now ϕ is the angle of a triangle
with base of length e and hypotenuse of length

√
e2 + y2. As

above we thus compute√
e2 + y2 =

e

cosϕ
=

e

cos(θ + 2π)
=

e

cos(θ)
,

and hence, also for θ ∈ (−7π/4,−3π/2) we conclude

log z = log(e/ cos θ) + iθ = 1− log(cos θ) + iθ.

To help draw this, we can use that 1−log(cos(π4 )) = 1−log(cos(−7π
4 ) =

1 − log(1
2

√
2) = 1 + log(

√
2) > 1 = 1 − log(cos 0) and 1 −

log(cos θ)→∞ as θ ↑ −3π
2 .

(Again I am being lazy, and I will not produce the picture here.)
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