Math 132 §2
Winter 2012

Midterm #1

Attempt all problems. It is noticed that the point total appears to be greater than 100. You will
receive all points earned unless your score exceeds 100. Then you just get 100. Good luck to
all, make your answers clear and concise (and a pleasure to grade). Justify your answers; right
answers with little or no derivation will not necessarily receive full credit.
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Problem (1) (10 Points) The following five numbers are all expressed as complex exponentials.
Write them in the form a + ib with a and b real. The quantities a and b must be expressed as ratios
of numbers, square roots, etc. You will get two points each for each right answer and loose three
points for each wrong answer. Having a negative number of points is considered a mathematical
impossibility so the worst that you can get on this question is a zero. But: leaving a question blank
is considered a wrong answer.
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Problem (2) (20 Points)
Part (a) 10 points. Let z = 10 — 10i Write z in polar form (z = re® with —7 < 6 < +).
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Part (b) (10 points). Let
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with o a real number. Write z in the for a + b with a and b real.
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Problem (4) (20 Points) For the ordinary (real) trigonometric function cosz, there is the famous
identity

1
cos’z = §[cos 2z + 1]

'Now consider the definition of cos z (with z = z + iy) as a function of the complex variable z.

Part (a) (5 points). Does the (analog of the) displayed identity hold for all complex values of

argument? ><
YES @ (Circle one)

Part (b) (15 points). Provide justification for your answer in Part (a). Specifically, if you said YES,
provide a full derivation or if you said NO, find a value z € C for which the generalization of the
above identity fails.
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Problem (5) (20 Points) Let u(z,y) and v(z,y) denote functions that are harmonic conjugates of
one another. Explicitly, u and v satisfy u; = vy; Uy = —v;. Now consider the function

Ulz,y) = e @2V cos(2u(z, y)v(z, y))-

Q: Is U(z,y) a harmonic function? Answer YES or NO then prove your assertion — i.e., a full
derivation is required. Hint: This problem, viewed from a certain perspective, is quite easy.
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Problem (6) (20 Points) Consider two functions:
P(z,y) = 3 — 3zy® + 2z
R(z,y) = z° — 3z°%y — 2y

Question: Could P(z,y) and/or R(z,y) conceivably be the real part of an (everywhere) analytic
function? Provide complete justification and circle the appropriate answer at the bottom of the

page.
[No justification = not much credit.] In (possible) affirmative cases, it is not requjired that you
produce the harmonic conjugate.
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