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Problem 1. Show that a complex number λ is such that

ez+λ = ez

for all z ∈ C if and only if λ is an integer multiple of 2πi.



Problem 2. Verify the Cauchy–Riemann equations for the real and imag-

inary parts of f(z) = z3.



Problem 3.

(a) Show that Laplace’s equation in polar coordinates is
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(b) Show that log |z| is harmonic on the punctured plane C\{0}.



Problem 4. Consider the differential

ω =
−ydx+ xdy

x2 + y2

for (x, y) 6= (0, 0).

(a) Show that ω is closed.

(b) Show that ω is not independent of path on any annulus centered at

(0, 0).




