Student ID#: _

MATH 131A - MIDTERM EXAM

0.1. **Instructions.** This is a 50 minute exam. You should feel free to quote any theorems proved in class, as well as anything proved in the homework or discussion section, unless specifically instructed otherwise. There are 6 questions—you are required to do the first true/false question, and choose 4 of the remaining 5. Only 4 problems other than the true/false question will be graded so you should indicate which problem you do not want graded by marking it with a large X across the page. Each question is worth 10 points.

The axioms of an ordered field

- (1) **O1**: Given a and b, either $a \leq b$ or $b \leq a$.
- (2) **O2**: If $a \leq b$ and $b \leq a$, then a = b.
- (3) **O3**: If $a \leq b$ and $b \leq c$, then $a \leq c$.
- (4) **O4**: If $a \le b$, then $a + c \le b + c$.
- (5) **O5**: If $a \leq b$ and $0 \leq c$, then $ac \leq bc$.

Exercise 0.1. Indicate whether the following statements are true or false:

- (1) The maximum of a bounded subset of \mathbb{Q} , if it exists, is rational.
- (2) Suppose $S \subseteq T$ are non-empty. Then $\inf(T) \leq \inf(S) \leq \sup(S) \leq \sup(T)$.
- (3) The sequence $(s_n)_{n \in \mathbb{N}}$ converges if there is some s so that the sequence $(s_n s)_{n \in \mathbb{N}}$ converges to 0.
- (4) If $S, T \subseteq \mathbb{R}$ have non-empty intersection, then $\sup(S \cap T) = \min(\sup(S), \sup(T))$.
- (5) Suppose $(s_n)_{n \in \mathbb{N}}$ is a sequence which does not converge. Then the sequence of absolute values $(|s_n|)_{n \in \mathbb{N}}$ also does not converge.

Proof. (1) True, the maximum of a set, if it exists, is an element of the set. So if the maximum of a set of rationals exists, it is rational.

(2) True, every lower bound for $\inf(T) \leq t$ for every element $t \in T$ so, since $S \subseteq T$, $\inf(T) \leq s$ for every $s \in S$. This means that $\inf(T)$ is a lower bound for S so is therefore less than or equal to the greater lower bound of S. This shows $\inf(T) \leq \inf(S)$. The inequality $\sup(S) \leq \sup(T)$ is similar and $\inf(S) \leq \sup(S)$ is clear.

(3) True. This is clear from the definitions, since $|s_n - s| = |(s_n - s) - 0|$. In more details, suppose $(s_n)_{n \in \mathbb{N}}$ converges to s. Then for all $\epsilon > 0$, there is N so that $n \ge N$ implies $|s_n - s| < \epsilon$. In other words, for all $n \ge N$, $|(s_n - s) - 0| < \epsilon$ so $(s_n - s)_{n \in \mathbb{N}}$ converges to 0. On the other hand, $(s_n - s)_{n \in \mathbb{N}}$ converges to 0, then for any $\epsilon > 0$, there is N so that $n \ge N$ implies $|(s_n - s) - 0| < \epsilon$, hence $|s_n - s| < \epsilon$. This shows $(s_n)_{n \in \mathbb{N}}$ converges to 0.

(4) False. Take $S = [0, 1) \cup [2, 3)$ and take T = [0, 2). Then $S \cap T = [0, 1)$. So $\sup(S) = 3$, $\sup(T) = 2$, and $\sup(S \cap T) = 1$.

(5) False. Take $s_n = (-1)^n$. We know this does not converge and yet $|s_n| = 1$ for all $n \in \mathbb{N}$ which clearly converges.

Exercise 0.2. Prove that

$$2^{n+3} \ge (n+3)^2$$

for all natural numbers n.

Hint: $(k+4)^2 = ((k+3)+1)^2 = (k+3)^2 + 2(k+3) + 1$.

Date: February 11, 2019; Ramsey.

Proof. The base case n = 1 is the statement that $2^4 \le 4^2$ which is true because both sides are 16.

Suppose we know that the statement is true for k. Then have

(k

2

$$(k+4)^2 = (k+3)^2 + 2(k+3) + 1$$

 $< 2^{k+3} + 2(k+3) + 1.$

Observe that $2(k+3) + 1 \le 2^{k+3}$ for all k: at k = 1, this says $9 \le 16$. If its true for k, then we have $2^{k+4} \ge 2(2(k+3)+1) = (k+3) + (k+3) + 2 \ge (k+4) + 1$, which proves the induction step. So we have

$$^{k+3} + 2(k+3) + 1 \le 2^{k+3} + 2^{k+3} = 2^{k+4}.$$

Putting it all together, we have

 $(k+4)^2 \le 2^{k+4}.$

Exercise 0.3. Find all rational roots of the polynomial $x^2 + \frac{1}{2}x + 1$ or prove there are none.

Proof. Note that the given polynomial does not have integer coefficients so the rational roots theorem does not directly apply. But multiplying by 2, we have $x^2 + \frac{1}{2}x + 1 = 0$ if and only if $2x^2 + x + 2 = 0$, and the latter polynomial does have only integral coefficients. If $\frac{c}{d}$ is a rational solution with gcd(c, d) = 1, then c, d divide 2, so $c = \pm 1, 2$ and $d = \pm 2$ so $\frac{c}{d} = \pm \frac{1}{2}, \pm 1, \pm 2$. Plugging in, we see that none of these roots are solutions, so by the rational roots theorem the polynomial has no rational roots.

Exercise 0.4. Prove from the axioms of an ordered field (without citing any results from class) that, in any ordered field F, for all $a, b, c, d \in F$, if $a \leq b$ and $c \leq d$, then $a+c \leq b+d$.

Proof. Suppose $a \leq b$ and $c \leq d$. By O4, because $a \leq b$, we have $a + c \leq b + c$. Also because $c \leq d$, by O4 again, we have $b + c \leq b + d$. Since we have $a + c \leq b + c$ and $b + c \leq b + d$, by O3, we have $a + c \leq b + d$.

Exercise 0.5. Prove the following limit law: if $(s_n)_{n \in \mathbb{N}}$ and $(t_n)_{n \in \mathbb{N}}$ are sequences that converge to s and t respectively, then $(s_n + t_n)_{n \in \mathbb{N}}$ converges to s + t.

Proof. Fix $\epsilon > 0$. As $(s_n)_{n \in \mathbb{N}}$ converges to s, there is N_0 so that, if $n \geq N_0$, then $|s_n - s| < \epsilon/2$. Likewise, as $(t_n)_{n \in \mathbb{N}}$ converges to t, there is N_1 so that, if $n \geq N_1$, then $|t_n - t| < \epsilon/2$. Set $N = \max\{N_0, N_1\}$. Then for all $n \geq N$, we have

$$|(s_n + t_n) - (s + t)| = |(s_n - s) + (t_n - t)| \le |s_n - s| + |t_n - t| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

As ϵ is arbitrary, this shows $(s_n + t_n)_{n \in \mathbb{N}}$ converges to s + t.

Exercise 0.6. Suppose A and B are non-empty sets of positive real numbers and assume A and B are bounded above. Let $C = \{ab : a \in A, b \in B\}$. Prove the following:

- (1) C is bounded above.
- (2) $\sup(C) = \sup(A) \sup(B)$.

Proof. Because A is bounded above and consists only of positive elements, there is a positive $M_0 = \sup(A)$ so that $a \leq M_0$ for every $a \in A$. Likewise, because B is bounded above and consists only of positive elements, there is some positive $M_1 = \sup(B)$ so that $b \leq M_1$ for all $b \in B$. Since every $b \in B$ is positive, we have $ab \leq bM_0$ for every $a \in A$ and $b \in B$. Likewise, because M_0 is positive, we have $bM_0 \leq M_0M_1$ for every $b \in B$. Putting it together, we get $ab \leq M_0M_1$ for every $a \in A$ and $b \in B$ so C is bounded above by M_0M_1 . Since $M_0M_1 = \sup(A) \sup(B)$ is an upper bound for C, the least upper bound for C satisfies $\sup(C) \leq \sup(A) \sup(B)$.

To complete the argument, we have to show $\sup(C) \ge \sup(A) \sup(B)$. Towards contradiction, suppose $\sup(C) < \sup(A) \sup(B)$. Given any small $\epsilon > 0$ with $\sup(A) \sup(B) - \cup(C) > \epsilon$. Then $\sup(A) - \epsilon/2 \sup(B) < \sup(A)$ so there is $a \in A$ with $\sup(A) - a < \epsilon/2 \sup(B)$ and likewise $\sup(B) - \epsilon/2 \sup(A) < \sup(B)$ so there is $b \in B$ with $\sup(B) - b < \epsilon/2 \sup(A)$. As $a \in A$ and $b \in B$, we know $ab \in C$ hence $ab \le \sup(C)$. Therefore $\sup(A) \sup(B) - \sup(C) \le \sup(A) \sup(B) - ab$. Additionally,

$$\begin{aligned} \sup(A) \sup(B) - ab &= \sup(A) \sup(B) - \sup(A)b + \sup(A)b - ab \\ &= \sup(A)(\sup(B) - b) + (\sup(A) - a)b \\ &< \frac{\sup(A)\epsilon}{2\sup(A)} + \frac{\sup(B)\epsilon}{2\sup(B)} \\ &= \epsilon. \end{aligned}$$

This shows that $\epsilon < \sup(A) \sup(B) - \sup(C) \le \sup(A) \sup(B) - ab < \epsilon$, which is impossible. This contradiction completes the proof.