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MATH 131A - MIDTERM EXAM

0.1. Instructions. This is a 50 minute exam. You should feel free to quote any theorems

proved in class, as well as anything proved in the homework or discussion section, unless

specifically instructed otherwise. There are 6 questions—you are required to do the first

true/false question, and choose 4 of the remaining 5. Only 4 problems other than the

true/false question will be graded so you should indicate which problem you do not want

graded by marking it with a large X across the page. Each question is worth 10 points.
The axioms of an ordered field

(1) O1: Given a and b, either a < b or b < a.
(2) O2: If a < band b < a, then a =b.

(3) O03: Ifa<band b <c, thena <ec.

(4) O4: Ifa<b,thena+c<b+ec.

(5) O5: If a < b and 0 < ¢, then ac < be.

Exercise 0.1. Indicate whether the following statements are true or false:

(1) The maximum of a bounded subset of Q, if it exists, is rational.

(2) Suppose S C T are non-empty. Then inf(7") < inf(S) < sup(S) < sup(T).

(3) The sequence (s, )nen converges if there is some s so that the sequence (85, —$)nen
converges to 0.

(4) If S, T C R have non-empty intersection, then sup(SN7T) = min(sup(S),sup(T)).

(5) Suppose (sn)nen is a sequence which does not converge. Then the sequence of
absolute values (|sn|)nen also does not converge.

Proof. (1) True, the maximum of a set, if it exists, is an element of the set. So if the
maximum of a set of rationals exists, it is rational.

(2) True, every lower bound for inf(7') < t for every element ¢t € T so, since S C T,
inf(T) < s for every s € S. This means that inf(7) is a lower bound for S so is therefore
less than or equal to the greater lower bound of S. This shows inf(7") < inf(S). The
inequality sup(S) < sup(T’) is similar and inf(.S) < sup(S) is clear.

(3) True. This is clear from the definitions, since |s, — s| = |(sn — s) — 0|. In more
details, suppose (sn)nen converges to s. Then for all € > 0, there is N so that n > N im-
plies |sn, — s| < €. In other words, for all n > N, |(s, —$) — 0] < € 80 (S — $)nen converges
to 0. On the other hand, (s, — s)nen converges to 0, then for any € > 0, there is N so
that n > N implies |(s, —s)—0| < €, hence |s, —s| < €. This shows (s, )nen converges to 0.

(4) False. Take S = [0,1)U]2,3) and take T' = [0,2). Then SNT = [0,1). So sup(S) = 3,
sup(T) =2, and sup(SNT) = 1.

(5) False. Take s, = (—1)". We know this does not converge and yet |s,| = 1 for

all n € N which clearly converges. O

Exercise 0.2. Prove that
2n+3 2 (n+3)2
for all natural numbers n.
Hint: (k+4)2=((k+3)+1)2=(k+3)2+2(k+3)+1.
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Proof. The base case n = 1 is the statement that 2* < 4% which is true because both sides
are 16.
Suppose we know that the statement is true for k. Then have

(k+4)? = (k+3)°+2(k+3)+1
< 2P Lok +3)+1.

Observe that 2(k + 3) + 1 < 2573 for all k: at k = 1, this says 9 < 16. If its true for k,
then we have 2°%% > 2(2(k 4+ 3) + 1) = (k+3) + (k 4+ 3) + 2 > (k + 4) + 1, which proves
the induction step. So we have

253 L 9(k +3) 41 < 287 4 ok +3 — ohHa,

Putting it all together, we have
(k +4)% < 28t
O

Exercise 0.3. Find all rational roots of the polynomial x> + %x + 1 or prove there are
none.

Proof. Note that the given polynomial does not have integer coefficients so the rational
roots theorem does not directly apply. But multiplying by 2, we have =% + %x +1=0if
and only if 222 +z + 2 = 0, and the latter polynomial does have only integral coefficients.
If ¢ is a rational solution with ged(c,d) = 1, then ¢, d divide 2, so ¢ = 1,2 and d = £2
so ¢ = :t%, +1, +2. Plugging in, we see that none of these roots are solutions, so by the
rational roots theorem the polynomial has no rational roots. O

Exercise 0.4. Prove from the axioms of an ordered field (without citing any results from
class) that, in any ordered field F, for all a,b,¢,d € F,if a < band ¢ < d, then a+c < b+d.

Proof. Suppose a < b and ¢ < d. By O4, because a < b, we have a + ¢ < b+ c¢. Also
because ¢ < d, by O4 again, we have b + ¢ < b+ d. Since we have a + ¢ < b + ¢ and
b+c<b+d, by O3, we have a + ¢ < b+ d. O

Exercise 0.5. Prove the following limit law: if (sn)nen and (tn)nen are sequences that
converge to s and t respectively, then (s, + tn)nen converges to s + t.

Proof. Fix € > 0. As (Sn)nen converges to s, there is Ny so that, if n > Np, then
|sn — s| < €/2. Likewise, as (tn)nen converges to t, there is Ny so that, if n > Ny, then
[t —t| < €/2. Set N = max{Noy, N1}. Then for all n > N, we have

(5 + ta) = (s+ 0] = (50 = 8) + (ta = O S [su = sl +[ta =] < 5 + 5 =<

As € is arbitrary, this shows (s, + tn)nen converges to s + t. O

Exercise 0.6. Suppose A and B are non-empty sets of positive real numbers and assume
A and B are bounded above. Let C = {ab: a € A,b € B}. Prove the following:

(1) C is bounded above.
(2) sup(C) = sup(A) sup(B).

Proof. Because A is bounded above and consists only of positive elements, there is a
positive My = sup(A) so that a < My for every a € A. Likewise, because B is bounded
above and consists only of positive elements, there is some positive M1 = sup(B) so that
b < M; for all b € B. Since every b € B is positive, we have ab < bMj for every a € A
and b € B. Likewise, because My is positive, we have bMy < MM, for every b € B.
Putting it together, we get ab < MyM; for every a € A and b € B so C' is bounded above
by MoM;. Since MoM; = sup(A) sup(B) is an upper bound for C, the least upper bound
for C satisfies sup(C) < sup(A) sup(B).
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To complete the argument, we have to show sup(C) > sup(A) sup(B). Towards contra-
diction, suppose sup(C') < sup(A)sup(B). Given any small € > 0 with sup(A)sup(B) —
U(C) > e. Then sup(A) — ¢/2sup(B) < sup(A) so there is a € A with sup(4) —a <
€/2sup(B) and likewise sup(B) —e€/2sup(A) < sup(B) so there is b € B with sup(B)—b <
€/2sup(A). As a € A and b € B, we know ab € C hence ab < sup(C). Therefore
sup(A) sup(B) — sup(C) < sup(A) sup(B) — ab. Additionally,

sup(A)sup(B) —ab = sup(A)sup(B) — sup(A)b+ sup(A)b — ab
= sup(A)(sup(B) — b) + (sup(4) — a)b
sup(A)e _ sup(B)e
2sup(A)  2sup(B)

This shows that e < sup(A)sup(B) — sup(C) < sup(A)sup(B) — ab < ¢, which is
impossible. This contradiction completes the proof. O




