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MATH 131A - MIDTERM EXAM

0.1. Instructions. This is a 50 minute exam. You should feel free to quote any theorems
proved in class, as well as anything proved in the homework or discussion section, unless
specifically instructed otherwise. There are 6 questions—you are required to do the first
true/false question, and choose 4 of the remaining 5. Only 4 problems other than the
true/false question will be graded so you should indicate which problem you do not want
graded by marking it with a large X across the page. Each question is worth 10 points.

The axioms of an ordered field

(1) O1: Given a and b, either a ≤ b or b ≤ a.
(2) O2: If a ≤ b and b ≤ a, then a = b.
(3) O3: If a ≤ b and b ≤ c, then a ≤ c.
(4) O4: If a ≤ b, then a+ c ≤ b+ c.
(5) O5: If a ≤ b and 0 ≤ c, then ac ≤ bc.

Exercise 0.1. Indicate whether the following statements are true or false:

(1) The maximum of a bounded subset of Q, if it exists, is rational.
(2) Suppose S ⊆ T are non-empty. Then inf(T ) ≤ inf(S) ≤ sup(S) ≤ sup(T ).
(3) The sequence (sn)n∈N converges if there is some s so that the sequence (sn−s)n∈N

converges to 0.
(4) If S, T ⊆ R have non-empty intersection, then sup(S∩T ) = min(sup(S), sup(T )).
(5) Suppose (sn)n∈N is a sequence which does not converge. Then the sequence of

absolute values (|sn|)n∈N also does not converge.

Proof. (1) True, the maximum of a set, if it exists, is an element of the set. So if the
maximum of a set of rationals exists, it is rational.

(2) True, every lower bound for inf(T ) ≤ t for every element t ∈ T so, since S ⊆ T ,
inf(T ) ≤ s for every s ∈ S. This means that inf(T ) is a lower bound for S so is therefore
less than or equal to the greater lower bound of S. This shows inf(T ) ≤ inf(S). The
inequality sup(S) ≤ sup(T ) is similar and inf(S) ≤ sup(S) is clear.

(3) True. This is clear from the definitions, since |sn − s| = |(sn − s) − 0|. In more
details, suppose (sn)n∈N converges to s. Then for all ε > 0, there is N so that n ≥ N im-
plies |sn− s| < ε. In other words, for all n ≥ N , |(sn− s)−0| < ε so (sn− s)n∈N converges
to 0. On the other hand, (sn − s)n∈N converges to 0, then for any ε > 0, there is N so
that n ≥ N implies |(sn−s)−0| < ε, hence |sn−s| < ε. This shows (sn)n∈N converges to 0.

(4) False. Take S = [0, 1)∪ [2, 3) and take T = [0, 2). Then S ∩T = [0, 1). So sup(S) = 3,
sup(T ) = 2, and sup(S ∩ T ) = 1.

(5) False. Take sn = (−1)n. We know this does not converge and yet |sn| = 1 for
all n ∈ N which clearly converges. �

Exercise 0.2. Prove that

2n+3 ≥ (n+ 3)2

for all natural numbers n.
Hint : (k + 4)2 = ((k + 3) + 1)2 = (k + 3)2 + 2(k + 3) + 1.
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Proof. The base case n = 1 is the statement that 24 ≤ 42 which is true because both sides
are 16.

Suppose we know that the statement is true for k. Then have

(k + 4)2 = (k + 3)2 + 2(k + 3) + 1

≤ 2k+3 + 2(k + 3) + 1.

Observe that 2(k + 3) + 1 ≤ 2k+3 for all k: at k = 1, this says 9 ≤ 16. If its true for k,
then we have 2k+4 ≥ 2(2(k + 3) + 1) = (k + 3) + (k + 3) + 2 ≥ (k + 4) + 1, which proves
the induction step. So we have

2k+3 + 2(k + 3) + 1 ≤ 2k+3 + 2k+3 = 2k+4.

Putting it all together, we have

(k + 4)2 ≤ 2k+4.

�

Exercise 0.3. Find all rational roots of the polynomial x2 + 1
2
x + 1 or prove there are

none.

Proof. Note that the given polynomial does not have integer coefficients so the rational
roots theorem does not directly apply. But multiplying by 2, we have x2 + 1

2
x+ 1 = 0 if

and only if 2x2 +x+ 2 = 0, and the latter polynomial does have only integral coefficients.
If c

d
is a rational solution with gcd(c, d) = 1, then c, d divide 2, so c = ±1, 2 and d = ±2

so c
d

= ± 1
2
,±1,±2. Plugging in, we see that none of these roots are solutions, so by the

rational roots theorem the polynomial has no rational roots. �

Exercise 0.4. Prove from the axioms of an ordered field (without citing any results from
class) that, in any ordered field F , for all a, b, c, d ∈ F , if a ≤ b and c ≤ d, then a+c ≤ b+d.

Proof. Suppose a ≤ b and c ≤ d. By O4, because a ≤ b, we have a + c ≤ b + c. Also
because c ≤ d, by O4 again, we have b + c ≤ b + d. Since we have a + c ≤ b + c and
b+ c ≤ b+ d, by O3, we have a+ c ≤ b+ d. �

Exercise 0.5. Prove the following limit law: if (sn)n∈N and (tn)n∈N are sequences that
converge to s and t respectively, then (sn + tn)n∈N converges to s+ t.

Proof. Fix ε > 0. As (sn)n∈N converges to s, there is N0 so that, if n ≥ N0, then
|sn − s| < ε/2. Likewise, as (tn)n∈N converges to t, there is N1 so that, if n ≥ N1, then
|tn − t| < ε/2. Set N = max{N0, N1}. Then for all n ≥ N , we have

|(sn + tn)− (s+ t)| = |(sn − s) + (tn − t)| ≤ |sn − s|+ |tn − t| <
ε

2
+
ε

2
= ε.

As ε is arbitrary, this shows (sn + tn)n∈N converges to s+ t. �

Exercise 0.6. Suppose A and B are non-empty sets of positive real numbers and assume
A and B are bounded above. Let C = {ab : a ∈ A, b ∈ B}. Prove the following:

(1) C is bounded above.
(2) sup(C) = sup(A) sup(B).

Proof. Because A is bounded above and consists only of positive elements, there is a
positive M0 = sup(A) so that a ≤ M0 for every a ∈ A. Likewise, because B is bounded
above and consists only of positive elements, there is some positive M1 = sup(B) so that
b ≤ M1 for all b ∈ B. Since every b ∈ B is positive, we have ab ≤ bM0 for every a ∈ A
and b ∈ B. Likewise, because M0 is positive, we have bM0 ≤ M0M1 for every b ∈ B.
Putting it together, we get ab ≤M0M1 for every a ∈ A and b ∈ B so C is bounded above
by M0M1. Since M0M1 = sup(A) sup(B) is an upper bound for C, the least upper bound
for C satisfies sup(C) ≤ sup(A) sup(B).
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To complete the argument, we have to show sup(C) ≥ sup(A) sup(B). Towards contra-
diction, suppose sup(C) < sup(A) sup(B). Given any small ε > 0 with sup(A) sup(B) −
∪(C) > ε. Then sup(A) − ε/2 sup(B) < sup(A) so there is a ∈ A with sup(A) − a <
ε/2 sup(B) and likewise sup(B)−ε/2 sup(A) < sup(B) so there is b ∈ B with sup(B)−b <
ε/2 sup(A). As a ∈ A and b ∈ B, we know ab ∈ C hence ab ≤ sup(C). Therefore
sup(A) sup(B)− sup(C) ≤ sup(A) sup(B)− ab. Additionally,

sup(A) sup(B)− ab = sup(A) sup(B)− sup(A)b+ sup(A)b− ab
= sup(A)(sup(B)− b) + (sup(A)− a)b

<
sup(A)ε

2 sup(A)
+

sup(B)ε

2 sup(B)
= ε.

This shows that ε < sup(A) sup(B) − sup(C) ≤ sup(A) sup(B) − ab < ε, which is
impossible. This contradiction completes the proof. �


