Midterm Solutions

1. (25 pts)

a.) We are given a cylindrical plasma initially with uniform plasma density n, with radius r,
and length L,. If the electrons are at temperature T, the kinetic energy is
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b.) Suppose all the electrons move out to a radius r, and ions are left inside the cylindrical
volume. Outside the cylinder, the electric field is zero. At a radius r inside the cylinder, we
can write Gauss’ law assuming L, > 1, and ignoring fringe fields
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The total electrostatic potential energy can by integrating the energy density over the
volume of the cylinder,
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c.) Equating the electrostatic potential energy with the kinetic energy

ﬂezn02L0r04 3
TEO = E KTOTlOT[T'OZLO



0KTo
Eezno

2
242,
24
102 =

ts)
(10p
Ap

6

2V6

ro ==



2. (25 pts)

A particle with charge g and mass m moves in electric and magnetic fields given by
E = (E,+xE")%, B =By2

where E, E, and B, are constants.

a.) We can solve the equations of motion exactly with the Lorentz force.
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Component-wise, we find
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Taking the time-derivative of the x-equation,
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If w? is positive, then this is simple harmonic motion. Therefore, we see gyration if
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A solution for v, is

v, = v, gcos(wt)
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b.) Plugging back into our force equation,

Uy = %(Eo + xE' + v,B,)
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Particle drifts in ¥, which is perpendicular to both E and B with velocity,
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c.) The gyro frequency is
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d.) If —>1) the equation of motion for v, becomes
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The particle motion is exponential in this case.
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3. (25 pts)

A charged particle moves in a magnetic mirror with v, at z = 0. The magnetic field varies
with time

B, = By(1 + a(t)?z?)

a.) The adiabatic invariants are the magnetic moment g and longitudinal invariant J. (5 pts)

b.) The equation of motion in z is
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c.) We solve our equation of motion for constant a. Taking another time derivative,
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This is simple harmonic motion. We know v, (t) = v, and z(t) = 0 the time t = 0. The
solutions are

v, (t) = v,y cos(wt), z(t) = —sm(wt) (7 pts)

d.) Now we can solve for the second adiabatic invariant.
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Recall the magnetic moment y is invariant from (a.) and By and m are constants. v, is the
velocity at the origin z = 0.
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After each bounce the parallel velocity changes depending on a(t). The amplitude of
oscillation z,,,, can be found by looking at the answers from (c)
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Substituting into the boxed equation above,
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4. (25 pts)

We are given a distribution function for electrons in phase-space for a 1-D plasma. We drop
the subscript x in the following solution.
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Our distribution function can also be written as
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a.) In order to compute the density n(x, t) we need to integrate our distribution function
over 1D velocity space

n(x,t) = foof(v)dv

It is provided that the integral of a Gaussian function is
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Our integrals take the form
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Using u-sub, we can reduce these integrals
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After integrating each distribution over velocity space, we are left with the number density
of that respective distribution function.
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b.) The average velocity is given by,
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We can simplify this integral,
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The first integral is 0
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The second integral is what we calculated in (a).
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Similarly for the second distribution function, we take n; - ny and v; —» —v,
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Plugging back in,
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c.) The total current density for electrons is given by

(o]

] =qe J vf(v)dv = —e(n,v; — nyvy)

— 00

If the total current density is 0, then

(10pts)

Partial credit is generously given for attempts on this problem.
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