1. (40 points) Quickly testing the basics.

Note: Only write answers in the boxes, and use the extra sheet at the end of the question for any scratch work.

(a) (4 points) The 7-bit 2's complement number representation of -11 is:

1110101

(b) (4 points) 6'b110101, when treated as a 6-bit signed magnitude number, has a decimal representation of:

-2

(c) (4 points) 8'b10011101 has a hexadecimal representation of:

unsigned = 9D / signed = -1D

(d) (4 points) If 8'b10011101 is a fixed point 1001.1101, the corresponding number is:

unsigned: 9.8125 / signed: -1.8125

(e) (4 points) If 8'b10011101 was a 4E3 floating point number (IEEE format), bias is:

3

(f) (4 points) If 8'b10011101 was a 4E3 floating point number (IEEE format), corresponding real number is:

- 31 - 44

(g) (4 points) True or false: A boolean function of N variables with greater than  $2^N-1$  product terms can always be simplified to an expression using fewer product terms.

True

(h) (4 points) What is the maximum number of product terms in a minimal sum-of-products expression with three variables?

4

5

(i) (4 points) What is the minimum number of 2-input NAND gates that would suffice for you to be able to build an implementation of any arbitrary 2-input boolean function?

(j) (4 points) You are treating the 8-bit numbers A[7:0] and B[7:0] as unsigned numbers. If you set B[3:0]=A[7:4] and B[7:4]=0, what is the numeric value of B as a function of A?

B=A/16 if / is viewed as integer division

or floor (A/16) if / is viewed as real division

2. (10 points) Reduce the following expression. The simplified expression should have the

minimum number of gates. Show the intermediate steps.  $f(a,b,c,d) = \neg(\neg(a \land c \land d) \land (\neg a \lor \neg b \lor \neg d) \land (\neg(a \land d) \lor c)) \lor \neg(a \land \neg b) \land (\neg a \lor (\neg b \land c) \lor (\neg b \land \neg c))$ 

$$f(a,b,c,d) = \overline{acd}(\overline{a+b+d})(\overline{ad+c}) + \overline{ab}(\overline{a+b}c+\overline{bc})$$

$$= acd + (\overline{a+b+d}) + (\overline{ad+c}) + (\overline{a+b})(\overline{a+b}(c+\overline{c}))$$

$$= acd + abd + a\overline{cd} + (\overline{a+b})(\overline{a+b})$$

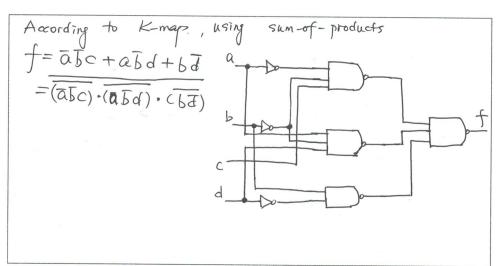
$$= ad(c+b+\overline{c}) + \overline{a}$$

$$= ad + \overline{a}$$

$$= ad + \overline{a}$$

$$= d + \overline{a}$$

$$= d + \overline{a}$$

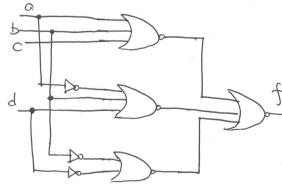

- 3. (20 points) Consider the following function  $f(a,b,c,d) = (\neg a \wedge \neg b \wedge c) \vee (b \wedge \neg c \wedge \neg d) \vee (\neg a \wedge c \wedge \neg d) \vee (a \wedge b \wedge \neg d) \vee (a \wedge \neg b \wedge d)$ 
  - (a) (5 points) Complete the Karnaugh Map shown below, circuit the prime implicants.

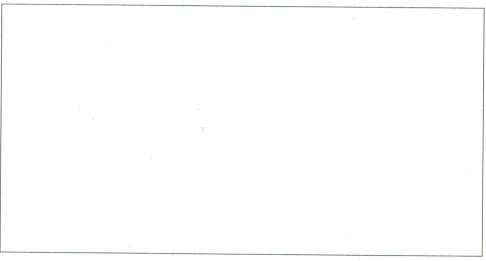
| ` | cd ab | 00 | 01 | 11 | 10 |   |
|---|-------|----|----|----|----|---|
|   | 00    | 6  | 1  | V  | 0  |   |
|   | 01 -  | 0  | 6  | 0  | 1  |   |
|   | 11    |    | 0  | D  |    | , |
|   | 10 -  | de | D  | 1  | 0  | _ |
|   |       |    | 1  | 1  |    |   |

How many prime implicants are there?

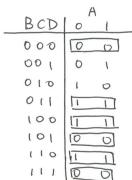
5

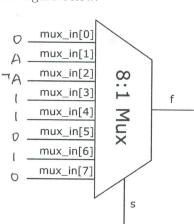
(b) (5 points) Show a combinational circuit that implements f using minimum number of inverters and NAND gates only. The maximum number of inputs per gate is less than 4.





(c) (5 points) Show a combinational circuit that implements f using minimum number of inverters and NOR gates only. The maximum number of inputs per gate is less than 4.

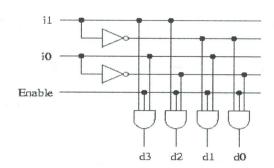
According to K-map, usin
$$f = \overline{abc} + \overline{abd} + \overline{bd}$$


$$= \overline{a+b+c} + \overline{a+b+d} + \overline{b+d}$$


product-of-sums






(d) (5 points) Show an 8-input Multiplexer that implements f. The select signal is  $s[2:0] = \{B,C,D\}$  where s=3'b100 is B=1 and C=D=0 selecting the input  $mux\_in[4]$ . Constants, A or  $\neg A$  are permissible as inputs,  $mux\_in[7:0]$ . Write the desired inputs on the figure below.

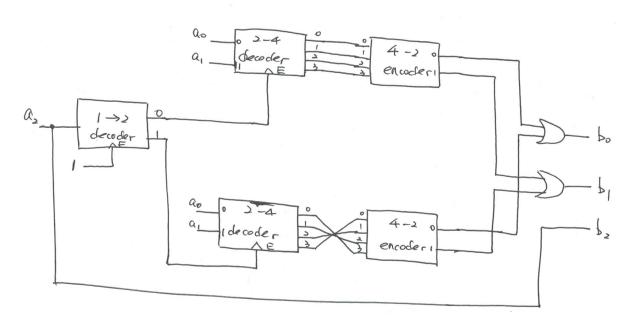




4. (10 points) Design a combinational network that has a three-bit input x representing the digits 0 to 7, and a three-bit output y representing the same set of integers. The function of the system is  $y = (x+3) \mod 8$ . You may use any building blocks and gates you have learnt.

5. (20 points) A standard decoder typically has an additional input pin E called Enable. The rough idea of using E in a decoder design is shown in the following figure. A 0 value




on E turns decoder off, setting all  $d_i$ s to 0. Value 1 on E turns decoder on. Design a combinational circuit that converts a 3-bit sign-and-magnitude number, a, into a 3-bit one's complement number, b. You are allowed to use any number and any combination of the following building blocks:

- $\bullet$  Decoders with enable pins:  $1 \to 2$  and  $2 \to 4$  decoders
- Encoders:  $2 \to 1$  and  $4 \to 2$  encoders
- Logic gates: Use either OR gates or AND gates, but not both

Every block and wire must be clearly labeled.

| _ | decimal | Sign-and-magnitude | one's complement |
|---|---------|--------------------|------------------|
|   | -3      | 111                | 100              |
|   | -2      | - 110.             | 101              |
|   | 1 - 1   | 101                | 110              |
|   | -0      | 100                | / / (            |
|   | 0       | 000                | 000              |
|   | 1       | 001                | 001              |
| , | 3       | 010                | 010              |
|   |         | 011                | 011              |

Observe that if the input is positive, then output be is the same as a. If input is negative, then the bits the are flipped.

