1. (20 points) Quickly testing the basics.

Note: Only write answers in the boxes, and use the extra sheet at the end of the booklet for any scratch work.

(a) (2 points) A positive edge triggered D flip-flop has a 100 MHz clock frequency. It's output update frequency is:

100 MHZ

(b) (3 points) The difference between a Moore machine and a Mealy machine is:

Marie: Dutput = f (state)

Menty : Output = f (state , input)

(c) (3 points) The difference between a FSM and a FSM with Datapath is:

FSM of not use variable or arithmetic operations, I state transition only).
FSMD = FSM (Control program flow) + Datapath (data processing specialisms)

(d) (3 points) The difference between a synchronous circuit and an asynchronous circuit is:

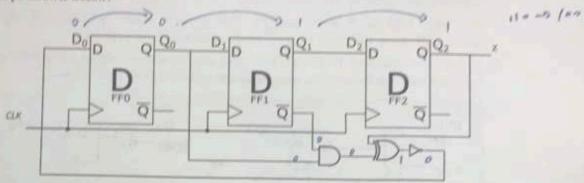
asynchronous clets has no unified/global elocle signal. It can also have muttiple clocks.

(e) (3 points) The difference between a latch and a flip-flop is:

latch is asymphronous / latch: lavel triffered .

(f) (3 points) The logic expression for a RS latch is (assuming R=1, S=1 is invalid):

Cen+1 = S+ R @"


(g) (3 points) In a flip-flop, once the enable trigger disappeared, the value inside of the element will:

Temenin the same.

- (20 points) A standard positive-edge triggered Flip-Flop(DFF) is provided as a building block. The goal is to add logic (AND, OR, INV, or MUX) to the D, Q, CLK pins to implement additional functionality.
 - (a) (5 points) Implement DFFR, where a RESET signal is added that implements a synchronous reset (1'b0) to the output when a clock edge arrives.

- (b) (5 points) Implement DFFS, where a SET signal is added that implements a synchronous set (1'b1) to the output when a clock edge arrives.
- (c) (5 points) Implement DFFCG (DFF clock gating), where a CLKSTOP signal is added that stops the clock to the Flip-Flop when CLKSTOP=1'b1.
- (d) (5 points) Implement DFFRA (DFF reset asynchronous), where a ARESET signal is added that implements an asynchronous reset(1'b0) to the output.

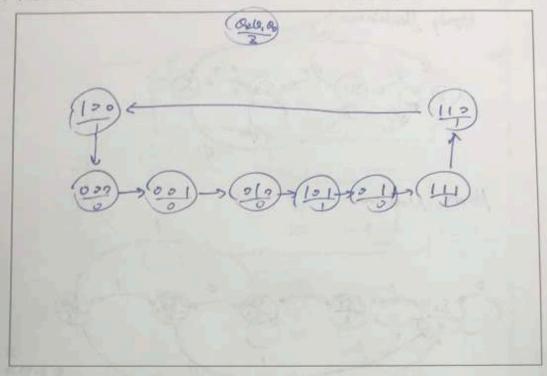
 (20 points) Analyze the sequential circuit of cascading positive-edge triggered D Flipflops shown below.

(a) (3 points) Determine the state transition logic expressions with respect to D_i, Q_i from the schematic.

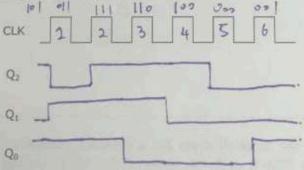
$$D_0 = (Q_0 \overline{Q}_1) \oplus Q_2 = (Q_0 \overline{Q}_1) \oplus Q_2$$

$$D_1 = Q_0$$

$$D_2 = Q_1$$

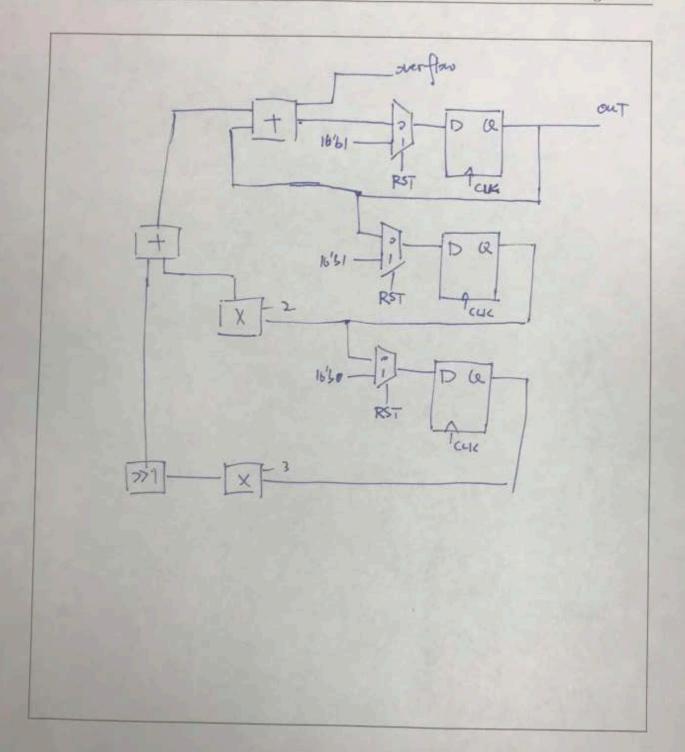

(b) (3 points) Determine the state transition logic expressions with respect to previous state Q_iⁿ and next state Q_iⁿ⁺¹ from the schematic.

$$Q_{n+1}^{m+1} = (Q_{n}^{m} \overline{Q_{n}^{m}}) Q_{n}^{m}$$


$$Q_{n+1}^{m+1} = Q_{n}^{m}$$

$$Q_{n+1}^{m+1} = Q_{n}^{m}$$


(c) (7 points) Determine Moore FSM of the circuit using $Q_2Q_1Q_0$ value as the state.


(d) (7 points) Assuming the initial state of $Q_2Q_1Q_0 = 101$, sketch waveforms of all signals with the given clock pattern.

 (20 points) Create a Moore machine FSM and a Mealy machine FSM for a sequence detector that outputs a 1 when it detects the final bit in the serial data stream 1101.

5. (20 points) Draw the block diagram for a datapath circuit to compute 16-bit f(x) = f(x-1) + 2f(x-2) + 3f(x-3) ≫ 1 (≫ means right shift). During each cycle, the circuit should output the next f(x) value (starting with f(0) = 0, f(1) = 1, f(2) = 1 after reset). Detailed implementation inside ≫ operation is not required. The circuit should signal when the next number is larger than 16 bits, and has reset ability. Output may be delayed by one clock cycle.

