1. (20 points) Quickly testing the basics. Note: Only write answers in the boxes, and use the extra sheet at the end of the booklet for any scratch work. (a) (2 points) A positive edge triggered D flip-flop has a 100 MHz clock frequency. It's output update frequency is: 100 MHZ (b) (3 points) The difference between a Moore machine and a Mealy machine is: More: Dutput = f (state) Menty: Output = f (state, input) (c) (3 points) The difference between a FSM and a FSM with Datapath is: FSM de not use variable or arithimetic operations. I state transition only). FSMD = FSM (Control program flow) + Datapath (data processing operations) (d) (3 points) The difference between a synchronous circuit and an asynchronous circuit is: asynchronous clets has no unified/global clock signal, It can also have muttiple clocks. (e) (3 points) The difference between a latch and a flip-flop is: latch is asynchronous / latch: lavel-triffered - ff: edge-triffered. (f) (3 points) The logic expression for a RS latch is (assuming R=1, S=1 is invalid): Cen+1 = S+RCe" (g) (3 points) In a flip-flop, once the enable trigger disappeared, the value inside of the element will: Terrain the same. - 2. (20 points) A standard positive-edge triggered Flip-Flop(DFF) is provided as a building block. The goal is to add logic (AND, OR, INV, or MUX) to the D, Q, CLK pins to implement additional functionality. - (a) (5 points) Implement DFFR, where a RESET signal is added that implements a synchronous reset (1'b0) to the output when a clock edge arrives. - (b) (5 points) Implement DFFS, where a SET signal is added that implements a synchronous set (1'b1) to the output when a clock edge arrives. - (c) (5 points) Implement DFFCG (DFF clock gating), where a CLKSTOP signal is added that stops the clock to the Flip-Flop when CLKSTOP=1'b1. - (d) (5 points) Implement DFFRA (DFF reset asynchronous), where a ARESET signal is added that implements an asynchronous reset(1'b0) to the output. 3. (20 points) Analyze the sequential circuit of cascading positive-edge triggered D Flip-flops shown below. (a) (3 points) Determine the state transition logic expressions with respect to D_i , Q_i from the schematic. $$D_0 = (Q_0 \overline{Q}_1) \oplus Q_2 = (Q_0 \overline{Q}_1) \oplus Q_2$$ $$D_1 = Q_0$$ $$D_2 = Q_1$$ (b) (3 points) Determine the state transition logic expressions with respect to previous state Q_i^n and next state Q_i^{n+1} from the schematic. $$Q_{n+1} = (Q_{n}^{n} \overline{Q_{n}}) Q_{n}^{n}$$ $$Q_{n+1} = Q_{n}^{n}$$ $$Q_{n+1} = Q_{n}^{n}$$ $$Q_{n+1} = Q_{n}^{n}$$ (c) (7 points) Determine Moore FSM of the circuit using $Q_2Q_1Q_0$ value as the state. (d) (7 points) Assuming the initial state of $Q_2Q_1Q_0=101$, sketch waveforms of all signals with the given clock pattern. 4. (20 points) Create a Moore machine FSM and a Mealy machine FSM for a sequence detector that outputs a 1 when it detects the final bit in the serial data stream 1101. 5. (20 points) Draw the block diagram for a datapath circuit to compute 16-bit $f(x) = f(x-1) + 2f(x-2) + 3f(x-3) \gg 1$ (\gg means right shift). During each cycle, the circuit should output the next f(x) value (starting with f(0) = 0, f(1) = 1, f(2) = 1 after reset). Detailed implementation inside \gg operation is not required. The circuit should signal when the next number is larger than 16 bits, and has reset ability. Output may be delayed by one clock cycle.