
CS151B/EE M116C
Computer Systems Architecture
Spring 2019 Midterm Exam II Solution
Instructor: Prof. Lei He

It is a closed-book exam.
There are total TWELVE pages including this cover page. Check whether you have all pages. If
not, let the TA know right now.
Good luck!

Problem 1: _______________ of 18 points
Problem 2: _______________ of 20 points
Problem 3: _______________ of 10 points
Problem 4: _______________ of 20 points
Problem 5: _______________ of 24 points
Total: _______________ of 92 points  

Problem 1. (18 points in total, 3 points for each)

Explain terms or answer short problems.

(1) Explain the concept of speculation in the scene of pipelining, and explain how it
works by using ONE example.

Guess instruction/data to be fetched when it is not decided yet.
beq rs, rt, there
add r1, r2, r3
there: add r3, r2, r1
Do add r1, r2, r3 when branching result is not settled, and flush the results if
wrong.

(2) Explain the concept of loop unrolling and why we perform loop unrolling

Unroll the loop n times and rename the registers to make a big loop. Loop
unrolling leads to more instructional level parallelism and therefore improve
performance.

(3) Explain the concept of super pipelining, and why it improves performance.

Deep pipeline with more stages. Reduce the clock cycle time.

(4) Name three techniques in software to resolve or relieve data hazards.

Insert nops, renaming, unrolling loops

(5) Name three techniques (in either software or hardware) to resolve or relieve
branch hazards.

stall, early detection, speculation

(6) Explain the procedures performed by a 5-stage pipelined processor when stalling
an instruction for resolving data hazard.

1. For IF and ID stages, PCWrite = 0.
2. IF/ID.write = 0 for IF/ID state registers.
3. Set 0 for control signals from IF, ID stages to EX, MEM, WB stages.

Problem 2 (20 points):

we examine how data dependences affect execution in the basic 5-stage pipeline.
Consider the following sequence of instructions:

lw $5, -16($5)
sw $5, -16($5)
add $5, $5, $5

Also, assume the CPU cycle time related to the forwarding as shown below:

(1) Assume there is no forwarding in this pipelined processor. Indicate hazards and
add NOP instructions to eliminate them. Show your answer with the new sequence of
instructions.

lw $5, -16($5)
Nop
Nop

sw $5, -16($5)
add $5, $5, $5

(2) Add NOP instructions to this code to eliminate hazards if there is ALU-ALU
forwarding only (no forwarding from the MEM to the EX stage). Draw the pipeline
diagram to answer.

lw $5, -16($5)
Nop
Nop

sw $5, -16($5)
add $5, $5, $5

Without forwarding With full forwarding With ALU-ALU forwarding

220 ps 240 ps 230 ps

(3) What is the total execution time of this instruction sequence with only ALU-ALU
forwarding? What is the speedup over a no-forwarding pipeline?

No forwarding: (5+4)*220ps = 1980ps
ALU-ALU forwarding: (5+4)*230ps = 2070ps
Speedup = 1980/2070 = 0.96

(4) Assume there is full forwarding. Indicate hazards and add NOP instructions to
eliminate them. Draw the pipeline diagram to answer.

lw $5, -16($5)
Nop

sw $5, -16($5)
add $5, $5, $5

(5) What is the total execution time of this instruction sequence WITHOUT any
forwarding and WITH full forwarding? What is the speedup achieved by adding full
forwarding to a pipeline that had no forwarding?

No forwarding: (5+4)*220ps = 1980ps
FULL forwarding: (4+4)*240ps = 1920ps
Speedup = 1980/1920 = 1.03

Problem 3 (10 points)

Considering data forwarding for the pipeline below, write down the Register-transfer
level (RTL) model for the control signal of MUX A. Use plain English and logic
function to explain when the control signal for MUX A should be 01 and 10
respectively. Represent control/register states of each instruction by specifying its
intermediate register and control/register name. For example, branch control bit of
an instruction between the ID and EX state can be represented as ID/EX.branch.

Control signal = 01

Forward from MEM/WB register
1. MEM/WB.RegWrite
2. IF/ID.RegisterRs != EX/MEM.RegisterRd && EX/MEM.RegWrite
3. ID/EX.RegisterRs == MEM/WB.RegisterRd
4. ID/EX.RegisterRs != 0

Control signal = 10

Forward from EX/MEM register
1. EX/MEM.RegWrite
2. ID/EX.RegisterRs == EX/MEM.RegisterRd
3. ID/EX.RegisterRs != 0

Problem 4 (20 points):

Consider the two-issue superscalar processor we covered in class. It has a five stage
pipeline where we can issue one ALU/branch instruction and one load/store
instruction every cycle.

Suppose the branch delay penalty is two clock cycles (or say, the branch hazard is
resolved in MEM stage), and it uses the full forwarding. How long would the
following code take to execute on this processor assuming the loop is executed 200
times? Assume the pipeline is initially empty.

!

(1) Suppose the loop is not unrolled for scheduling. Schedule the code (use the table
below) to minimize the total number of cycles required. (8 points)

Total # of cycles for 200 iterations: ______________1204_______________

(Hint – schedule the code first for one iteration, then figure out how long it will take
the processor to run 200 iterations of this scheduled code)

(2) Now unroll the loop once to make two copies of the loop body.
Schedule it again to minimize the total number of cycles required. (12 points)

Total # of cycles for 200 iterations: ________________804_____________

!

Problem 5 (24 points):

Consider the single-cycle processor implementation. Your task will be to augment this
data path with a new instruction: the cai instruction (conditional assign immediate).
This instruction will be an I-type instruction, and will have the following effect:

if (MEM[R[rs]] == R[rt])
 R[rt] = SE(I)
else
 R[rt] = MEM[R[rs]] - R[rt]

Note: MEM represent for data memory. SE represent for sign extension. R represent
for register.

(1) Complete the main controller control table. Fill in with 1, 0, or X for does not
matter). (8 points)

R-type lw sw beq

Opcode 00 0000 10 0011 10 1011 00 0100

RegDst 1 0 X X

Branch 0 0 0 1

MemRead 0 1 0 0

MemtoReg 0 1 X X

MemWrite 0 0 1 0

ALUSrc 0 1 1 0

RegWrite 1 1 0 0

ALUop 10 00 00 01

(2) Implement cai on the single cycle datapath on the following two pages (for
datapath and control table). Use the I-type instruction format. All other instructions
must still work correctly after your modification. You should not add new ALUs,
register file ports, or ports to memory. However, simple logic gates, i.e. AND, OR,
XOR gates are allowed. The number of newly added logic gates should be as small as
possible. (16 points)

Main Controller modified as below.

ALU Controller should not be modified.

R-type lw sw beq cai

Opcode 00 0000 10 0011 10 1011 00 0100 10000
(any
unused
one)

RegDst 1 0 X X 0

Branch 0 0 0 1 0

MemRead 0 1 0 0 1

MemtoRe
g

0 1 X X 0

MemWrite 0 0 1 0 0

ALUSrc 0 1 1 0 0

RegWrite 1 1 0 0 1

ALUop 10 00 00 01 01

CAI_Cont
rol

0 0 0 0 1

!

