Midterm 1

Yuan Liang

Problem 1: (total 10 points)

Short problems:

(1) Name 3 of great ideas in designing Computer Architecture according to you and
briefly explain what does each of them mean (3 points)

Design for Moore’s Law

The one constant for computer designers is rapid change, which is driven largely by
Moore’s Law. It states that integrated circuit resources double every 18-24 months.
Moores Law resalted Trom a 1963 prediction of such growth n T capacity made
by Gordon Moore, one of the founders of Intel. As computer designs can take years,
the resources available per chip can easily double or quadruple between the start
and finish of the project. Like a skeet shooter, computer architects must anticipate
where the technology will be when the design finishes rather than design for where moore’'s Law

it starts. We use an “up and to the right” Moore’s Law graph to represent designing
for rapid change.

Use Abstraction to Simplify Design

Both computer architects and programmers had to invent techniques to make
themselves more productive, for otherwise design time would lengthen as
dramatically as resources grew by Moore’s Law. A major productivity technique for

hardware and software is to use abstractions to represent the design at different
levels of representation; lower-level details are hidden to offer a simpler model at
EigEer leveis. We Il use the abstract painting icon to represent this second great

idea.

|

A
O,

E

o
H 5

ABSTRACTION

Make the Common Case Fast

Making the common case fast will tend to enhance performance better than
optimizing the rare case. Ironically, the common case is often simpler than the
rare case and hence is often easier to enhance. This common sense advice implies
that you know what the common case is, which is only possible with careful
experimentation and measurement (see Section 1.6). We use a sports car as the common case Fast
icon for making the common case fast, as the most common trip has one or two

passengers, and it’s surely easier to make a fast sports car than a fast minivan!

Performance via Parallelism

Since the dawn of computing, computer architects have offered designs that get
more performance by performing operations in parallel. We'll see many examples
of parallelism 1n this book. We use multiple jet engines of a plane as our icon for
parallel performance.

PARALLELISM

Performance via Pipelining

A particular pattern of parallelism is so prevalent in computer architecture that
it merits its own name: pipelining. For example, before fire engines, a “bucket
brigade” would respond to a fire, which many cowboy movies show in response to
a dastardly act by the villain. The townsfolk form a human chain to carry a water

source to 1re, as they could much more quickly move buckets up the chain instead
. of individuals running back and forth. Our pipeline icon 1s a sequence of pipes,
PIPELINING with each section representing one stage of the pipeline.

Performance via Prediction

Following the saying that it can be better to ask for forgiveness than to ask for
permission, the final great idea is prediction. In some cases it can be faster on
average to guess and start working rather than wait until you Know for sure,
assuming that the mechanism to recover Irom a misprediction 1s nNot t0o exXpensive.
and your prediction is relatively accurate. We use the fortune-teller’s crystal ball as
our prediction icon.

rreniction Hierarchy of Memories

Programmers want memory to be fast, large, and cheap, as memory speed often
shapes performance, capacity limits the size of problems that can be solved, and the
cost of memory today is often the majority of computer cost. Architects have found
that they can address these conflicting demands with a hierarchy of memories, with
the Tastest, smallest, and most expensive memory per bit at the top oI the hierarchy
and the slowest, largest, and cheapest per bDit at the bottom. As we shall see In
HIERARCHY "“Chapter b, caches give the programmer the illusion that main memory is nearly
as fast as the top of the hierarchy and nearly as big and cheap as the bottom of
the hierarchy. We use a layered triangle icon to represent the memory hierarchy.
The shape indicates speed, cost, and size: the closer to the top, the faster and more
expensive per bit the memory; the wider the base of the layer, the bigger the memory.

oﬂl-m

DEPENDABILITY

Dependability via Redundancy

Computers not only need to be fast; they need to be dependable. Since any physical
device can fail, we make systems dependable by including redundant components that
can take over when a failure occurs and to help detect failures. We use the tractor-trailer
as our 1con, since the dual tires on each side of 1ts rear axels allow the truck to continue

driving even when one tire fails. (Presumably, the truck driver heads immediately to a
repair facility so the flat tire can be fixed, thereby restoring redundancy!)

add is for signed number, addu is for unsigned number.
add may cause an overflow exception, while addu will not.
(3) True/False: circle the correct answer (1 point each)

T F 1. Branch instructions in MIPS can only jump forward 32768 and
backward 32767 instructions.

a branch with an immediate of 0 jumps forward 1 instruction

T F 2. A carry-out at the most significant bit after an addition of two
signed numbers always indicates overflow.

operations with a negative result will always have carry-out

T F 3. If we only have three parameters to send to a non-recursive
function, then we can use registers and don’t need to use the stack.

T F 4. Every location in the text segment 1s accessible from a single
branch statement.

Problem 2 (10 points):

Binary bits have no inherent meaning. Given the bit pattern:
10110100

What does it represent, assuming that it is
a. An unsigned integer?
b. Signed magnitude
c. I’s complement
d. 2’s complement

a) (2 points)
180

b) (2 points)
-52
¢) (2 points)
=75

d) (2 points)
-76

We are defining 8-bit floating-point precision, with the following format:
Sign (1 bit) | Exponent (3 bits) | Fraction (4 bits)

Assuming that it follows the same philosophy as single and double precision defined
by IEEE 754 standard.

¢) (2 points) What should be the bias for this 3-bit exponent? Leave your answer in
decimal.

3

f) (2 points) What is the binary representation of the smallest float, which is strictly
larger than 1? What are its values in binary and decimal?

00110001

1+27-4=1.0625

Problem 3 (4 points):

Assume 1 and j are assigned to $s0 and $s1. The base address of the array A and B are
in registers $s2 and $s3 respectively. Convert the following C code to MIPS code.

C code:

B[7]=A[li] + A[j];

sll $t0, $s0, 2 #word to byte conversion 1 = 1%*4;
add $t0, $t0, $s2 #address of A[1]

lw S$t2, 0(St0) #load A[1]

sl1 $t1, S$s1, 2 #7 = 1*4;

add $t1, $tl1, $s2 #address of A[7]]

lw $t3, 0($tl) #load A[7]

add $t4, S$t2, S$t3 #temp = A[1]+A[7]]
sw S$t4, 28($sl) #save temp to B[7]

Problem 4 (12 points):

Consider the application A and the baseline MIPS processor with the following
Instruction cycles. Suppose application A executes three billion instructions. Answer
the question below, and explain your work.

Instruction % of Instructions 1n 4 Instruction Latency (cycles)
Load 20% B
Store 10% R
Simple R-type (1.e. adds. ands. shifts) 45% 4
Multiply 10% 5
BEQ/BNE 10% 3
Jump 5% 3

Suppose processor has different clock cycles for different instructions.
(1) What 1s the CPI for application A?

02*5+.014+0454+0.1*5+0.1*3+0.05*3=4.15

(2) The hardware running the application has a cycle time of 300ps. What 1s the
execution time for that hardware to run the application.

3*10"9 * 4.15 * 300 * 10™-12 = 3.735

(3) Now suppose we add an instruction that does a multiply/accumulate operation.
The multiply/accumulate operation replaces one multiply instruction and one add
istruction. This optimization allows the compiler to replace 50% of multipies. What

1s the new CPI?

20/95*5+10/45*4+40/95*4+5/95*5+10/95*3+5/95*3+5/95*7F
=4.27

(4) What 1s the execution time for the same hardware from part (2) to run the new
application from part (c)?

0.95*3*10"9 * 4.27 * 300 * 10"-12 = 3.65

Problem 5 (12 points):

Carry Look-Ahead adder:
Given the following truth table for a full adder:

Inputs Outputs
A B Cin S Cout
0 0 0 0 0
0 | 0 1 0
1 0 0 1 0
1 1 0 0 1
0 0 1 1 0
0 1 1 0 1
1 0 1 0 |
1 1 1 1 1

The G (generate) can be defined as 4*B and P (propagate) can be defined as 4 +B.

(1) Write out the expression for S and Cout given A, B, and Cin for a 1-bit adder with
truth table as shown above.

S=Cin " (A * B)
Cout = (A * B) + (A * Cin) + (B * Cin)

CO0, A1, and B1 as shown 1n figure below, which is a 4-bit Carry Lookahead Adder
(CLA).

ADH
B0

oo

A1
B1

T

0]

T

B2+

I

A3 S Ga

B3

16

|

Pa

Pi=Ai " Bi

Gi=Ai * Bi

Ga = G0*P1*P2*P3 + G1*P2*P3 + G2*P3 + G3
Pa =P0*P1*P2*P3

C4=Ga+C0* Pa

(2) A 16-bit Hierarchical CLA can be built by four 4-bit CLA’s with the way as shown
in figure. Write out the expression for C20, C24, C28 and C32, when given
Go.Gy.Gy,Gw,Py,Py Py . Pw and C16.

= c

¢ :E 16
_ L
:i“_é -
= = = = P
— (e] | ’
=1 4-bit E

X Jcaa |- G
- ol X
- *| P,
—_ ! Cas
= 4-bit —

¢ - —
= ClA G,
— "I Py
- _C”
=1 4-bit |=

W _| c — |G,
= oL P
- }Ca

16-bit HCLA

20= G¢ + P¢Cis
C24 =Gx+PxGo +Px Pp -Cie
C28= Gy + Py -GxX+ Py ‘Px'G¢ + Py -Px- P9 -Cis

C32 = Gw+ Pw Gy + Px- Py -GX+ Pw- Py -Px- G¢ + Pw- P¢ -Px- P¢ -Cis

(1) Find the values for all control signals in the single cycle implementation for the
following instructions. (fill in 1, 0, or X for does not matter)

Instruction [Jump address [31-0]

e _/\
\' 20 28 |pc+4[31-28) - ~(0 1
>Add . 4—* ~ M M

X X
ALU .
ailm f >Add result —0
RegDst _ [Shift
Jump %ﬂ? _—
_Branch - N
MemRead
Instruction [31-26] MemtoReg
Control ALUD
e
/ ALUSrc
RegWrite
Foad Instructian [25-21] Read
| 4 s :L‘f ’ i
*| PC &> oddress register 1 peag . \\
Instruction [20-16] Read data 1 .
Instruction a) | redister 2 >ALU o
[31_0] M \-"‘Jv(‘tf—: F—(:’:i? > C .PAQIIJLi{ AddreSquCr}atg 1
Instruction | || |nstnction [15-11]| | | register 98182 l, it data [M
mul.or' L > \1'/’ m'f‘ e x // -~ ox
Write .
"| data Registers ! Write Deta
*|data WYEmOrY
. \
Instruction [15-0] 16 , S|9 \} 3\2 AN
lexte | control
Instruction [5-0]

Instruction [25-0] Shift Jump address [31-0]
left 2 N ~\
28 PC + 4 [31-28]| \\ (0
L—* Y]
T~ u
X
ALU 1 .
>Add result
RegDst
Jump /
Branch -
MemRead
Instruction [31-26] MemtoReg
*| Control 260
MemWrite
/ ALUSrc
RegWrite
Instructian [25-21] Read
- Read it . le:T.;iHIHI 1
address Jiote Read ;\
Instruction [20-186] Read data 1 —~
Instruction a7 | redister 2 ALuzem
(31-0] M| | write Read | 41,0 ,SQLUL# Addresste;g 1
Ir:'tmctlon emory Instruction [15-11] : register dataz - - :II
. > -~
! Write x| X
™| data Registers | || [\ 0
g _|write Data
N\ data Memory
. 1 . ' K
Instruction [15-0] 6 [sign- \} 2 ALU
Qﬂenj control
Instructicn [5-0]
R-type Iw sw beq jump
Opcode 00 0000 10 0011 10 1011 00 0100 00 0010
RegDst 1 0 X X X
Jump 0 0 0 0
Branch 0 0 0 1 X
MemRead 0 1 0 0
MemtoReg 0 1 X X X
MemWrite 0 0 1 0
ALUSrc 0 1 1 0 X

RegWrite 1 1 0 0

(2) We wish to add the instructions sybi (sub immediate) to the single-cycle machine.
What changes do we need to make to the control signals and the datapath? Revise
on the fig below, and modify the control signal table above.

Instruction [25-0] Shift Jump address [31-0]
left 2 < =)
_’\‘ 26328 PC + 4 [31-28] ~0
M
u
X

>Add . | L—'\\\ -

4 —» / >Add rgsbﬂ—' S
RegDst / | |

Jump -
_Branch _/ N
\ MemRead
Instruction [31—26] MemtoReg
»| Control ALUOp
| MemWrite
/ ALUSrc
RegWrite
Instruction [25-21] Read
> PC (> ;n(enardes it . register 1 Read ¥‘\\‘\
Instructian [20-186] Read jata 1 . ™~
Instruction o) | redister 2 B Zero
[31—0] M ‘n.y'lJ'r te ;—(].3;: > C / ALU’ ALU Addregngcad /T\‘
lm‘oﬂ Instmohon [15_-1 1[li r(’llj—l ster gata 2 M . (‘.nl]lt Nata h‘
memory | e -1 u o u
T e) 0
-* s 4 .
data Registers | write mg;tgy
— " |data
7\
Instruction [15-0] 16 /[\ 32
- ' Sign- | O

[ALU
| ~
\“7 |control
Instructicn [5-0]

Instruction [25-0]

Shift

Jump address [31-0]

N

PC + 4 [31-28]| | ~

N/

.'addres

Instruction
[31-0]

Instruction
memory

Instruction [31-26]

Instructian [25-21]

| Gontrol A0,

P

RegDst
Jump

Branch

ALU
>Add result

MemRead

MemtoReg

MemWrite

/ ALUSrc

RegWrite

Instruction [20-16]

e
>

Instruction [15-11]
e

Instruction [15-0]

P
M
u
X
1
Tr

Read
register 1 Read

Read data 1
register 2

Write Read
register dataz
Write

data Registers

7~ O\

16 [gign. | 32

Whrite

i

~
Instructicn [5-0]

data

Address

Read
data

Deata
memory

ALU
control

Oxezx™

Opcode
RegDst
Jump
Branch
MemRead
MemtoReg
ALUop sub
MemWrite

ALUSrc

RegWrite

Unique

O o o o o

