Final Exam

UID

DO NOT OPEN UNTIL INSTRUCTED TO DO SO.

- We will copy some graded exam papers for archival purposes!
- Put your name in the blank on EVERY page.
- Show your setup.
- · Circle your answers.
- Add notes to help the graders determine your intentions.

Problem	Value	Score	Problem	Value	Score
1a	1		4	25	
1b	1		5	15	
1c	1		6a	5	
1d	1		6b	5	
1e	4		7a	8	
2	20		7b	8	
3	6		TOTAL	100	95

•IF YOU ARE PRINTING THE TEST AND WRITING ON IT, USE THE NEXT PAGE FOR ANSWERS.

- a. Using Node Voltage Analysis, write an Ohm's Law expression (in terms of V_1 and V_2) for the current going through the 4 Ω resistor.
- b. Under the same assumption, write an Ohm's Law expression (in terms of V_1 and V_2) for the current through the $1\,\Omega$ resistor.
- c. Continuing, write an expression (in terms of V_1 and V_2) for the current through the 2 Ω resistor.
- d. Now, combine the answers to 1a,b,c into a KCL equation for Node 1.
- e. Write the KCL equation for Node 2 (in terms of V_1 and V_2).

2

You now have 2 equations in 2 unknowns. Solve them for V_1 and V_2 .

3

Now that you know V_1 , you can compute I.

ECE3 Spring 2020

Name

Final Exam

UID

HIS PAGE FOR CALCULAT

$$a.V_{1}-12=I_{1}(4)$$

 $b.V_{1}-0=I_{1}(1)$

ECE3 Spring 2020

Name

Family (Last) Name

Given (First) Name

Final Exam

UID_

4 Find
$$V_{x}$$
.

 $\frac{\sqrt{x}}{\sqrt{x}}$
 $-\frac{1}{2}$
 $-\frac{3}{2}$
 $+\frac{1}{3}$
 $-\frac{1}{2}$
 $-\frac{1}{3}$
 $-\frac{1}{$

Final Exam

UID_

5

Find
$$V_o$$
.

$$0 - V_0 = \frac{0.001}{4700}$$
 $V_0 = 0.21 \mu V$

Name_

Family (Last) Name

Name

Final Exam

UID

6

The switch has been in position A for a Long Time. At t=0, it moves instantaneously from A to B. Find the trajectory of the current i(t).

- a. What is the current i(0⁻)?
- b. What is the current $i(0^+)$?

O. The inductor opposes changes in current, so i(0) = i(01) $a \cdot i(0) = \frac{10}{100} - [0.1A]$ $b \cdot i(01) = i(01) = \frac{10}{100} - [0.1A]$

Family (Last) Name

Final Exam

UID

7

In this circuit, ω =6283 rad/s.

- a. Find Z_1 .
- b. Find Z_C.

$$a. 2L = \int WL$$

$$Z_{L} = \int (6283)(0.75)$$

$$Z_{L} = 4712.25 \int \Omega$$

