ECE3 Spring 20	020
----------------	-----

Name		
_	Family (Last) Name	Given (First) Name

Final Exam

UID		
UID)	

DO NOT OPEN UNTIL INSTRUCTED TO DO SO.

- We will copy some graded exam papers for archival purposes!
- Put your name in the blank on EVERY page.
- Show your setup.
- Circle your answers.
- Add notes to help the graders determine your intentions.

Problem	Value	Score	Problem	Value	Score
1a	1		4	25	
1b	1		5	15	
1c	1		6a	5	
1d	1		6b	5	
1e	4		7a	8	
2	20		7b	8	
3	6		TOTAL	100	

ECE3 Spring 2020	Name		
	_	Family (Last) Name	Given (First) Name
Final Exam	UID		

•IF YOU ARE PRINTING THE TEST AND WRITING ON IT, USE THE NEXT PAGE FOR ANSWERS.

- a. Using Node Voltage Analysis, write an Ohm's Law expression (in terms of V_1 and V_2) for the current going through the 4 Ω resistor.
- b. Under the same assumption, write an Ohm's Law expression (in terms of V_1 and V_2) for the current through the 1 Ω resistor.
- c. Continuing, write an expression (in terms of V_1 and V_2) for the current through the 2 Ω resistor.
- d. Now, combine the answers to 1a,b,c into a KCL equation for Node 1.
- e. Write the KCL equation for Node 2 (in terms of V_1 and V_2).

You now have 2 equations in 2 unknowns. Solve them for V_1 and V_2 .

Now that you know V_1 , you can compute I.

ECE3 Sp	ring	2020
---------	------	------

amily (Last) Name

Given (First) Name

Final Exam

UID

USE THIS PAGE FOR CALCULATIONS

$$I = \frac{(V_1 - 12V)}{(4 SL)}$$

$$I = \frac{(V_1 - 12V)}{(4 SL)}$$

$$I = \frac{(12V - V_1)}{4 SL}$$
If the current is entering V_1

16) Assuming owners & leaving VI

$$(V_1 - OV) = I(IR)$$

$$I = \frac{V_1}{IR} = V_1$$

1c) Assuming ownent a reaving V,

$$(V_1 - V_2) = I(2\Omega)$$

$$I = \frac{(V_1 - V_2)}{2\Omega}$$

(Assume all one exiting)

$$\frac{V_1 - 12}{4} + V_1 + \frac{V_1 - V_2}{2} = 0$$

1e) mode 2: All currents reaving

$$\frac{V_2 - V_1}{2} + \frac{V_2 - 0}{5} + \frac{V_2 - 0}{3 + 6} = 0$$

$$\frac{V_2-V_1}{2} + \frac{V_2}{5} + \frac{V_2}{9} = 0$$

ECE3	Spring	2020
------	--------	------

Name______Family (Last) Name

Given (First) Name

Final Exam

UID

USE THIS PAGE FOR CALCULATIONS

2) Two equations

$$\frac{V_{1}-12}{4} + V_{1} + \frac{V_{1}-V_{2}}{2} = 0 \implies V_{1}-12+4V_{1}+2V_{1}-2V_{2}=0$$

$$\frac{V_{2}-V_{1}}{2} + \frac{V_{2}}{5} + \frac{V_{2}}{9} = 0 \implies 45V_{2}-45V_{1}+18V_{2}+10V_{2}=0$$

$$46V_1 = 73V_2$$

 $V_1 = \frac{73}{45}V_2$

$$7\left(\frac{73}{45}V_2\right) - 2V_2 = 12$$

$$\frac{511}{45}$$
 $V_2 - \frac{90}{45}$ $V_2 = 12$

$$\frac{421}{45}$$
 $V_2 = 12$

$$V_1 = \frac{73}{45} (1.28 \text{ V})$$

$$V_1 = 2.08 \text{ V}$$

$$V_1 = 2.08 \text{ V}$$
 $V_2 = 1.28 \text{ V}$

3) I = current across 4 & resistor entening the nucle V.

$$I = \frac{(12V - 2.08V)}{4\Omega} = 2.48A$$

ECE3	Spring	2020
------	--------	------

Family (Last) Name

Given (First) Name

Final Exam

UID

Find V_x.

 $\begin{array}{c|c}
 & 4 \Omega & V_{x} \\
\hline
 & I_{2} & \\
\hline
 & 3I_{2} & \\
\end{array}$

Mode voltage analysis Vx

$$\frac{(V_X - 6V)}{4 - 2} - 3I_2 + \frac{V_X - 0}{3 - 2} = 0$$

$$3V_{X} - 18 - 36I_{2} + 4V_{X} = 0$$

$$7V_{X} - 18 - 36I_{2} = 0$$

$$7/x - 18 - 36(\frac{6-1}{4}) = 0$$

$$7v_{x} - 18 - 54 + 9v_{x} = 0$$

ECE3	Spring	2020
------	--------	------

Family (Last) Name

Given (First) Name

Final Exam

UID____

5

Find V_o .

BY KCL

$$\frac{V_n - V_6}{4.7 \text{ kg}} - \text{Im} A = 0$$

constraince: Vn = 0

$$-V_0 = ImA(47KR)$$

= $(I \times IO^{-3}A)(4.7 \times IO^{-3}R)$
= 4.7V

ECE3	Spring	2020
------	--------	------

amily (Last) Name

Given (First) Name

Final Exam

UID

6

The switch has been in position A for a Long Time. At t=0, it moves instantaneously from A to B. Find the trajectory of the current i(t).

- a. What is the current $i(0^-)$?
- b. What is the current $i(0^+)$?

$$(10V) = I(100 - 2)$$

 $I(0) = 0,10AI$

the ineluctor resists onemaje in ourrent,

Final Exam

UID____

7

In this circuit, ω =6283 rad/s.

- a. Find Z_L .
- b. Find Z_C.

a)
$$z_1 = jwl$$

= $j(6283 \text{ rad}/s)(0.75 \text{ H})$
= $j(4712,25)$

b)
$$z_c = \frac{1}{jwc}$$

$$= \frac{1}{j(6283 \text{ rad/s})(3.3 \times 10^{-6} \text{ F})}$$

$$= -j(48.23)$$

ECE3 Spring 2020	Name		
1 0	_	Family (Last) Name	Given (First) Name
Final Exam	UID		_

USE THIS PAGE FOR OVERFLOW CALCULATIONS.