EE2: Physics for Electrical Engineers Practice Midterm Spring 2016 Actual midterm: April 27th 2016, 2 pm to 3:50 pm, 1102 Perloff Hall

Instructors: Prof. Chee Wei Wong, Jinghui Yang and Yi-Ping Lai Closed book, but with 1-sheet (2-sides of $8.5" \times 11"$ paper) of notes. Please use calculator.

Question 1. (20 points) Neamen 2.25

2.25 An elecron is bound in a one-dimesional infinite potential well with a width of 75 Å. Determine the electron energy levels (in eV) for $n = 1, 2, 3$.

$$
E = \frac{h^2 n^2 \pi^2}{2m a^2} = \frac{(1.054 \times 10^{-34})^2 \pi^2 n^2}{2 \times (9.11 \times 10^{-31}) \times (75 \times 10^{-10})^2}
$$

 $E = 1.070 \times 10^{-21} n^2(J)$

or

$$
E = 6.69 \times 10^{-3} n^2 (eV)
$$

Then

$$
E_1 = 6.69 \times 10^{-3} (eV)
$$

\n
$$
E_2 = 2.67 \times 10^{-2} (eV)
$$

\n
$$
E_3 = 6.02 \times 10^{-2} (eV)
$$

Question 2. (20 points) Neamen 3.14

3.14 Two possible valence bands are shown in the E versus k diagram given in Figure P3.14. State which band will result in the heavier hole effective mass; state why.

The effective mass for a hole is given by

$$
m_p^* = \left(\frac{1}{\hbar^2} \cdot \left| \frac{d^2 E}{d k^2} \right| \right)^{-1}
$$

We have

$$
\left| \frac{d^2 E}{dk^2} \right| \text{(curve A)} > \left| \frac{d^2 E}{dk^2} \right| \text{(curve B)}
$$

So

$$
m_p^*(curve \ A) < m_p^*(curve \ B)
$$

Figure P3.14 | Valence bands for Problem 3.14.

Question 3. (20 points) Neamen 3.45

3.45 Assume that the Fermi energy level is exactly in the center of the bandgap energy of a semiconductor at $T = 300$ K. (*a*) Calculate the probability that an energy state in the bottom of the conduction band is occupied by an electron for Si, Ge, and GaAs. (b) Calculate the probability that an energy state in the top of the valence band is empty for Si, Ge, and GaAs.

(a) When
$$
E_F = E_{midgap}
$$

$$
f(E) = \frac{1}{1 + \exp\left(\frac{E - E_F}{kT}\right)} = \frac{1}{1 + \exp\left(\frac{E_g}{2kT}\right)}
$$

Si:
$$
E_{\rm g} = 1.12 \, eV
$$

$$
f(E) = \frac{1}{1 + \exp\left[\frac{1.12}{2(0.0259)}\right]}
$$

Or

$$
f(E) = 4.07x10^{-10}
$$

Ge: $E_e = 0.66 eV$,

$$
f(E) = \frac{1}{1 + \exp\left[\frac{0.66}{2(0.0259)}\right]}
$$

or

$$
\frac{f(E) = 2.93 \times 10^{-6}}{\text{GaAs: } E_g = 1.42 \, eV},
$$

$$
f(E) = \frac{1}{1 + \exp\left[\frac{1.42}{2(0.0259)}\right]}
$$
or

 $f(E) = 1.24x10^{-12}$

(b) We now prove that the probability of a state at $E_2 = E_F - \Delta E$ being empty equals to the probability of a state at $E_I = E_F + \Delta E$ being occupied:

We have

$$
f_1(E_1) = \frac{1}{1 + \exp\left(\frac{E_1 - E_F}{kT}\right)} = \frac{1}{1 + \exp\left(\frac{\Delta E}{kT}\right)}
$$

and

$$
1 - f_2(E_2) = 1 - \frac{1}{1 + \exp\left(\frac{E_2 - E_F}{kT}\right)}
$$

$$
= 1 - \frac{1}{1 + \exp\left(\frac{-\Delta E}{kT}\right)} = \frac{\exp\left(\frac{-\Delta E}{kT}\right)}{1 + \exp\left(\frac{-\Delta E}{kT}\right)}
$$

or

$$
1 - f_2(E_2) = \frac{1}{1 + \exp\left(\frac{+\Delta E}{kT}\right)}
$$

Hence the result for part (b) is the same with that in part (a).

Question 4. (20 points) Neamen 4.19

The electron concentration in silicon at $T = 300$ K is $n_0 = 2 \times 10^5$ cm⁻³. (a) Deter-4.19 mine the position of the Fermi level with respect to the valence band energy level.

$$
n_i = \sqrt{N_c N_v \exp\left(-\frac{E_s}{kT}\right)} = \sqrt{(2.8 \times 10^{19})(1.04 \times 10^{19}) \exp\left(-\frac{1.12}{0.0259}\right)} = 6.95 \times 10^9 \text{ cm}^{-3}
$$

$$
p_0 = \frac{n_i^2}{n_0} = 2.415 \times 10^{14} \text{ cm}^{-3}
$$

(p_0 can be slightly different if you use different value of $n_i = 0.7 \sim 1.5 \times 10^{10}$)

Since $p_0 > n_0$, it is *p*-type material.

Instead of holes, we use electron density to find a more accurate value of Fermi level because $E_C - E_F \gg kT$.

$$
n_0 = N_c \exp\left[\frac{E_F - E_c}{kT}\right]
$$

\n
$$
N_c = 2.8 \times 10^{19}
$$

\n
$$
E_F - E_c = kT \ln\left(\frac{n_0}{N_c}\right) = 0.0259 \ln\left(\frac{2 \times 10^5}{2.8 \times 10^{19}}\right) = -0.845 \text{ eV}
$$

\n
$$
E_F - E_v = (E_F - E_c) + (E_c - E_v) = (E_F - E_c) - E_g = 0.2764 \text{ eV}
$$

Question 5. (20 points) Neamen 4.50

A silicon device is doped with donor impurity atoms at a concentration of 10^{15} cm⁻³. 4.50 For the device to operate properly, the intrinsic carriers must contribute no more than 5 percent to the total electron concentration. (a) What is the maximum temperature that the device may operate? (b) What is the change in $E_c - E_F$ from the $T = 300$ K value to the maximum temperature value determined in part (a) . (c) Is the Fermi level closer or further from the intrinsic value at the higher temperature?

$$
(a)
$$

$$
n_0 = \frac{(N_d - N_a)}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2}
$$
 (4.60)

 $n_i = 0.05n_o$ and

yielding
$$
n_0 = 1.0025 \times 10^{15}
$$
 cm⁻³
so $n_i = 5.0125 \times 10^{13}$ cm⁻³

so from

$$
n_i^2 = N_c N_v \exp\left[\frac{-(E_c - E_v)}{kT}\right] = N_c N_v \exp\left[\frac{-E_g}{kT}\right]
$$
 (4.23)

$$
(5.0125 \times 10^{13})^2 = (2.8 \times 10^{19}) \times (1.04 \times 10^{19}) \times (\frac{T}{300})^3 \times \exp[\frac{-1.12}{0.0259 \times (T/300)}]
$$

So $T \approx 482 K$

(b)

When T=300K

When T=300K
\n
$$
n_i = \sqrt{N_c N_v \exp\left[-\frac{(E_c - E_v)}{kT}\right]} = 6.95 \times 10^9 \text{ cm}^{-3}
$$
\n
$$
n_0 = \frac{N_d - N_a}{2} + \sqrt{\left(\frac{N_d - N_a}{2}\right)^2 + n_i^2} = 1.0000 \times 10^{15} \text{ cm}^{-3} \text{ (almost the same as } n_i \text{ at } 482 \text{K)}
$$

from

$$
E_c - E_F = kT \ln \left(\frac{N_c}{n_0}\right) \tag{4.63}
$$

The change of Fermi level position is
\n
$$
E_{F,T=482K} - E_{F,T=300K}
$$
\n
$$
= 0.0259 \times \frac{482}{300} \times \ln \left[\frac{2.8 \times 10^{19} \left(\frac{482}{300} \right)^{3/2}}{1.0025 \times 10^{15}} \right] - 0.0259 \times \ln \left[\frac{2.8 \times 10^{19}}{1.0000 \times 10^{15}} \right]
$$
\n
$$
= 0.4556 - 0.2652 = 0.1904 \text{ eV}
$$

(c) Take n-type semiconductor as an example, as the temperature increases, n_i increases, that is, the majority carrier electron concentration in the conduction band increases; as the probability of occupancy of allowed energy states by electrons and holes are equal, the majority carrier hole concentration in the valance band also increases. As a result, the crystal behaves more like an intrinsic semiconductor (losing its extrinsic characteristics), meaning that *EF* moves closer to the intrinsic Fermi level. The same for p-type semiconductor.

The variation of Fermi level with temperature is shown in Fig. 4.19.

Figure 4.19 | Position of Fermi level as a function of temperature for various doping concentrations. $(From Sze [14].)$