EE 2 – Spring 2005

UCLA

Mid-term examination May 16, 2005

2:00 PM to 3:00 PM

Physical Constants:

Planck's Constant h	6.626 X 10 ⁻³⁴ J-s
Electron rest mass m ₀	9.1 X 10 ⁻³¹ kg
Electron-volt eV	$1.602 \times 10^{-19} \mathrm{J}$
Boltzmann Constant k	$1.38 \times 10^{-23} \text{ J/K}$
Charge of an electron q	-1.602 X 10 ⁻¹⁹ C
Thermal energy(at 300°K) kT	0.0259 eV
Velocity of light c	$3 \times 10^8 \text{ m/sec}$

Material Properties:

Useful properties of silicon;

Energy gap: 1.16 eV Intrinsic carrier density n_i (300°K) 1 X10¹⁰ cm⁻³

- 1. a) In a photoconductor, light is made to fall on a semiconductor sample and the light consists of photons of sufficient energy to excite electrons from the valence band to the conduction band. If one were to use silicon as a photoconductor what is the maximum wavelength of light that can be used? (2 points)
- b) Consider a physical quantity that depends on kinetic energy E as $F = E^{1/2}$. Compute the average of F at T = 0K for electrons in a box in terms of the highest energy (Fermi energy). (8 points)
 - 2. In an extrinsic silicon, the Fermi energy is 0.35 eV above the intrinsic Fermi energy.
 - a) What type silicon is it? (1 point)
 - b) Assuming all the impurity atoms are ionized what is the density of impurity atoms? (6 points)
 - C) If in this material, 10^{17}cm^{-3} impurity atoms of the opposite type are added, what will be the position of the Fermi energy? (3 points)
- 3.GaAs has an energy bandgap of 1.43 eV. Effective mass of electron in the conduction band is $0.067m_0$ and effective mass of hole in the valence band is $0.5m_0$ where m_0 is the mass of the electron in vacuum.
 - (i) Find the intrinsic carrier density, n_i at 400K. (5points)
 - (ii) Find the position of the intrinsic Fermi energy $E_{\scriptscriptstyle i}$ (5points)

Midtern Solutions

$$\frac{31}{100} = \frac{100}{100} = \frac{100}{100} = \frac{100}{100} = \frac{34}{100} =$$

$$\frac{1}{3} = \frac{1}{3} \frac{\epsilon^2}{\epsilon^2} = \frac{1}{3} \frac{$$

(b)
$$V = V_1 \cdot e^{-\frac{C_1}{K_1}} = V_2 \cdot \frac{0.35}{0.0251} = 7.39 \times 10^{-6} \text{ cm}^{\frac{3}{2}}$$

(C)
$$N_{4} - N_{5} = 10^{17} - 7.39 \times 10^{15} = 9.26 \times 10^{16} \text{ cm}^{3}$$