Midterm Solution

Winter 2013

1.

$$c = \lambda * f$$

 $f = \frac{c}{\lambda}$
 $\lambda = 0.4 - 0.7 \mu m \Rightarrow f = 4.27E14 - 7.47E14Hz$
 $E = h * f$
 $E = 1.77 - 3.09eV$

Energy band gaps smaller than 1.77eV are non transparent (Si, GaAs).

Energy band gaps greater than 3.09eV are transparent (GaN).

Energy band gaps between 1.77eV-3.09eV are partially transparent (GaP).

2.

$$\mu = \frac{q\tau}{m_e^*}$$

$$\bar{\tau} = 2.6 \times 10^{-13} s$$

3. a) $\tau_D = \frac{\varepsilon}{\sigma}$ $\sigma = q\mu_p N_a$ $\tau_D = 4.65 \times 10^{-12} s$

b) $\tau_D = \frac{\varepsilon}{\sigma}$ $\sigma = qn_i(\mu_n + \mu_p)$ $\tau_D = 3.6 \times 10^{-7} s$

c) $L_D = \sqrt{\frac{\varepsilon kT}{q^2 N_a}}$ $L_D = 4.8 \times 10^{-5} cm$ $L_D = 0.48 \mu m$

4.

Indirect recombination is a defect-assisted recombination. During indirect recombination, the electrons "falls" in a trap and is confined in a small space. From Heisenberg uncertainty principle, $\Delta p \Delta x \ge h/4\pi$, a small uncertainty in space leads to a large uncertainty in momentum. This uncertainty in momentum accounts for any momentum change that might have been observed.

5.

$$n_{i} = 2 * \left(\frac{2\pi kT}{h^{2}}\right)^{3/2} (m_{e}^{*}m_{p}^{*})^{3/4} e^{-E_{g}/2kT}$$

$$n_{i}(77k) = 5.57 \times 10^{-13} m^{-13} = 5.57 \times 10^{-19} cm^{-3}$$

$$n_{i}(300k) = 7.12 \times 10^{9} cm^{-3}$$

$$n_{i}(600k) = 1.01 \times 10^{15} cm^{-3}$$

a)

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$n_0 = N_D$$

$$(E_F - E_i) = kT * Ln\left(\frac{N_D}{n_i}\right)$$

$$(E_F - E_i) = 0.52eV$$

b)

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$n_0 = N_D$$

$$(E_F - E_i) = kT * Ln\left(\frac{N_D}{n_i}\right)$$

$$(E_F - E_i) = 0.37eV$$

c)

$$n_0 = n_i e^{(E_F - E_i)/kT}$$

$$n_0 = N_D$$

$$(E_F - E_i) = kT * Ln\left(\frac{N_D}{n_i}\right)$$

$$(E_F - E_i) = 0.12eV$$

