Name: SOLUTION

Student ID:

Problem	points	max
1	en prise	12
2		4
3		8
4	di best	4
Total	no piere	28

EE1 - Winter 11: QUIZ 2

Thursday, February 17, 2011

Answer ALL 4 questions. Write your answers directly onto this handout. Show all your work. You are allowed to use your 3"x5" index card as cheat-sheet and a calculator.

Problem 1 (Concepts)

[1] You place a negative charge a distance ρ from a wire carrying a current *I*. What will happen to the charge ?

- (a) it will circle the wire clockwise
- (b) it will circle the wire counter-clockwise

(c) it will move parallel to the wire

- (d) it will move radially outwards away from the wire
- ((e)) it will stay where it is

[2] Mark all materials that will be repelled by a bar-magnet

- (a) aluminum ($\mu_r = 1.000022$)
- (b) water $(\mu_r = 0.999992)$
- (c) super-conductors $(\mu_r = 0)$
- (d) bismuth ($\mu_r = 0.999834$)
- (e) iron $(\mu_r = 3000)$

[3] Two current carrying wires are crossed and exactly perpendicular to each other. What will happen ?

- (a) Since the wires are not parallel nothing will happen
- (b) The wires will repel each other
- ((c) The wires will torque to align to each other, then repel each other

(d) can't tell

[4] Electrons in a conductor move at a velocity that

((a) is proportional to the electric field

(b) is independent of the electric field since there is no E inside a conductor

(c) only depends on the material (i.e. mobility)

(d) depends on the charge density

[5] Which of the following will create a homogeneous magnetic field?

(a) a straight bar magnet

(b) an infinitely long perfectly cylindrical wire

(c) a current carrying circular loop

((d) An infinite current sheet

(e) two aligned bar-magnets in a small gap between the magnets

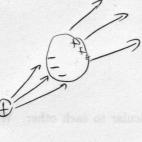
[6] A magnetic dipole in an inhomogeneous magnetic field with an angle of 45° between dipole axis and field direction experiences

(a) A net torque but no net force

((b) both a net torque and a net-force

(c) neither a net torque nor a net-force

(d) Need to know both angles to answer this question


[7]A magnetic dipole in the field of a second magnetic dipole experiences

(a) both a net torque and a net force

(b) only a net torque

(c) no force at all since it is at rest

[8] You place a conducting sphere inside an existing electric field from a point-charge. Draw a sketch of the field lines and describe in words what happens to the electric field inside and outside of the conductor. =) no charge inside conductor - field live end and stat

- field out side canducter dae not change [9] If you fill an initially empty space that is immersed in an electric field with water, what will happen to the electric field in this space?

ch Surface charge

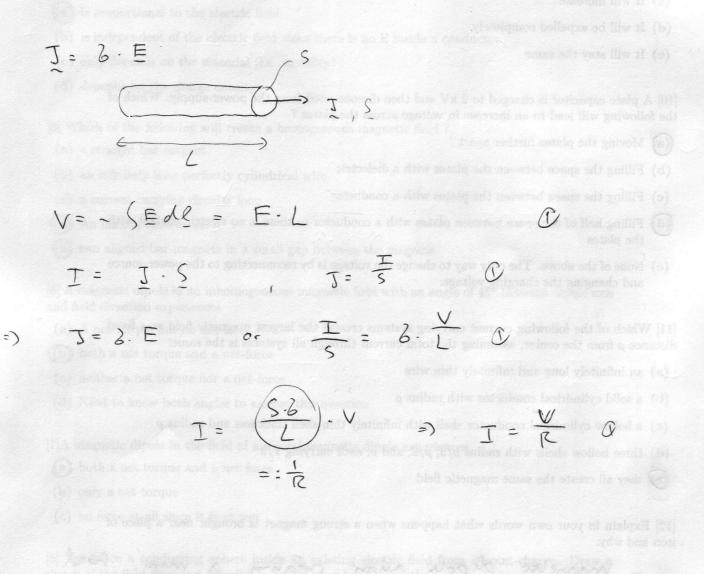
- (a) It will refract
- ((b)) It will decrease
- (c) It will increase
- (d) It will be expelled completely
- (e) It will stay the same

[10] A plate capacitor is charged to 2 kV and then disconnected from the power-supply. Which of the following will lead to an increase in voltage across the plates ?

- (a) Moving the plates further apart
- (b) Filling the space between the plates with a dielectric
- (c) Filling the space between the plates with a conductor
- (d) Filling half of the space between plates with a conductor so there is no electric contact with the plates
- (e) None of the above. The only way to change the voltage is by reconnecting to the power-source and changing the charging voltage.

[11] Which of the following current carrying systems creates the largest magnetic field at a fixed distance ρ from the center, assuming the total current through all systems is the same:

- (a) an infinitely long and infinitely thin wire
- (b) a solid cylindrical conductor with radius ρ
- (c) a hollow cylindrical conductor shell with infinitely thin shell thickness and radius ρ
- (d) three hollow shells with radius $\rho/3$, $\rho/2$, and ρ , each carrying I/3
- (e) they all create the same magnetic field


[12] Explain in your own words what happens when a strong magnet is brought near a piece of iron and why.

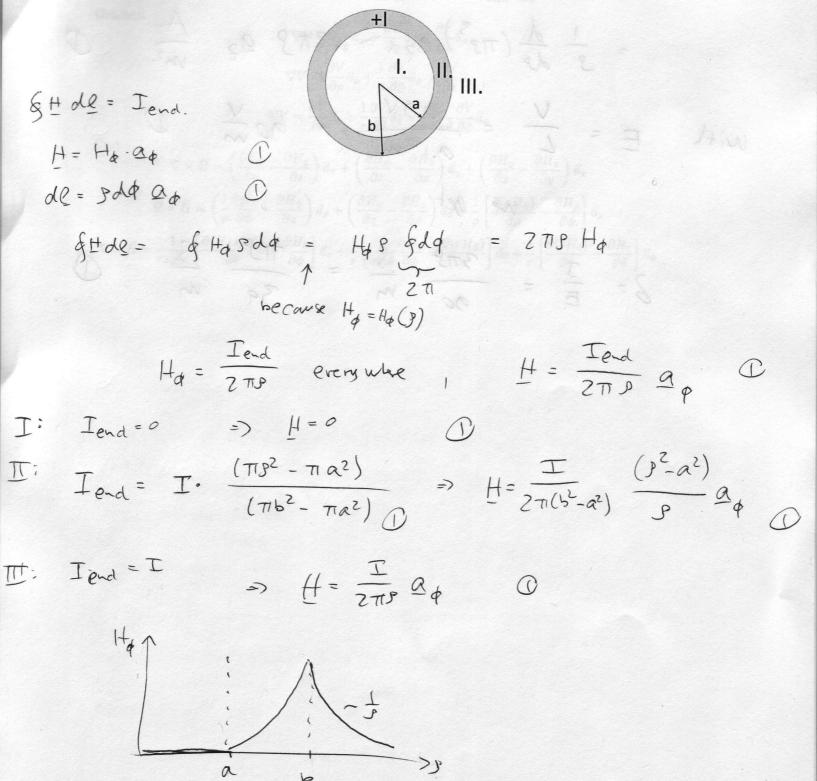
- magnetic dipols align, creating a magn. held

in the same direction as the external field.

Problem 2

Use Ohm's law in its general (vector) form to find the well-known relation between voltage and current in a conductor.

(b) If you till an antially mapty space that is immersed in an electric field with water, what will, happen to the electric field in this space ?


(4/28)

Problem 3

(8/28)

A current I is sent through a hollow cylindrical conducting shell with inner radius a and outer radius b. (a) Find the vector magnetic field in all three regions:

- (I) inside the shell $(\rho < a)$
- (II) within the conducting shell $(a < \rho < b)$, and
- (III) outside the shell $(\rho > b)$.
- (b) Draw a sketch of H as a function of ρ .

Problem 4

A solid, cylindrical conductor has a conductivity σ that varies with radius. The magnetic field within the conductor is $\vec{H} = \pi \rho^2 \vec{a_{\phi}}$ A/m, when a voltage of 9 V is applied across the 10 cm long conductor. Find σ as a function of ρ .

$$J = D \times H = \int \frac{1}{p} \frac{d}{dp} (p H_{\phi}) \Phi_{2} \qquad O$$

$$= \int \frac{1}{s} \frac{d}{dp} (\pi p^{3}) \Phi_{2} = 3\pi g \Phi_{2} \qquad A = 0$$

$$With \qquad E = \frac{V}{L} = \frac{0.9V}{0.1 \text{ m}} = 90 \frac{V}{\text{m}} \qquad O$$

$$We \quad Qet$$

$$J = \frac{J}{E} = \frac{3\pi g}{g_{0}} \qquad M = \frac{\pi g}{3e} \qquad M = 0$$

(4/28)