Name:

Student ID:

(15/45)

EE1 - Winter 10: FINAL

Wednesday, March 17, 2010

Answer ALL 6 questions. Write your answers directly onto this handout. Show all your work. You are allowed to use up to two 3"x5" index cards as cheat-sheet and a calculator.

Problem 1 (Concept questions)

[1] Imagine a closed surface that is not symmetric. The net enclosed charge is zero. What can you say about the electric field at a given point at this surface ?

- (a) it is also zero.
- (b) it is not zero
- (c) can't tell

[2] If you move a charge a distance d against a static electric field and then back, how much work do you perform ?

- (a) no work at all
- (b) a small amount of work due to friction
- (c) the field performs work
- (d) can't tell

 $[\mathbf{3}]$ A solid spherical conductor is given a net negative charge. The electrostatic potential of the conductor is ?

- (a) smallest at the center
- (b) smallest on the surface
- (c) constant throughout the volume
- (d) largest somewhere between center and surface

[4] Which of the following charge distributions creates a potential that increases with distance ?

- (a) magnetic dipole
- (b) spherical charge
- (c) infinite sheet of charge
- (d) conducting cylinder (inside)

[5] You connect a battery to a conducting wire with cylindrical cross-section. What can you say about the electric field inside the wire ?

- (a) it is zero inside the conductor
- (b) it is constant everywhere
- (c) it varies linearly from one end to the other
- (d) it points radially outwards

[6] The velocity of free charges inside a wire

- (a) increases with charge density
- (b) increases with length of the wire for a given electric field
- (c) increases linearly with electric field
- (d) does only depend on the resistivity

[7] A certain material is repelled by a permanent magnet. Which of the following would be an appropriate μ_r ?

- (a) $\mu_r = 0$
- (b) $\mu_r = 0.6$
- (c) $\mu_r = -2.3$
- (d) $\mu_r = 15$

[8] An electric dipole in the field of a second electric dipole experiences

- (a) both a net torque and a net force
- (b) only a net torque
- (c) no force at all since it is at rest

[9] Imagine two wires crossing each other at an right angle. If you drive a current through both wires, what will happen ?

- (a) the wires will attract each other
- (b) both wires will rotate
- (c) both wires will align
- (d) nothing will happen

[10] A homogeneous electric field is created by an infinite sheet of positive charge. If you place a conducting plate in front of the charge sheet what will happen to the electric field behind the plate ?

- (a) The plate will charge up and will increase the field since it is closer
- (b) The plate will act as a shield and cancel out the electric field behind it
- (c) The electric field behind the plate will not change

- (d) You create a capacitor and change the field between the two conductors
- [11] Which of the following can increase the inductance of a conducting system
- (a) charging it
- (b) increasing the current flowing through it
- (c) increasing its resistance
- (d) changing its geometry

[12] A dipole antenna radiates electromagnetic waves preferably in which direction ?

- (a) perpendicular to the dipole
- (b) along the dipole axis
- (c) at an oblique angle
- (d) It depends on the frequency

[13] An electromagnetic wave propagates in the z direction. If the magnetic field points in the x direction, in which direction does the electric field point?

- (a) x
- **(b)** y
- (c) z
- (d) -y
- (e) -x

[14] A wave equation is given as $\partial^2 A/\partial z^2 = c \cdot \partial^2 A/\partial t^2$. What is the velocity of the wave ?

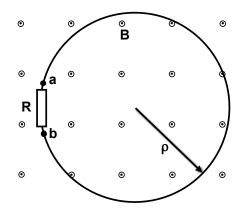
- (a) c
- (b) \sqrt{c}
- (c) 1/c
- (d) $1/\sqrt{c}$

[15] If you fill the space between the plates of a charge capacitor with a dielectric what will happen to the electric field in that space ?

- (a) it will stay the same, changing the charge on the plates
- (b) it will increase
- (c) it will decrease
- (d) can't tell

Use $\vec{J} = \sigma \cdot \vec{E}$ to prove that two resistors R_1 and R_2 in parallel behave like one resistor with a total resistance of $R_{tot} = (R_1 R_2)/(R_1 + R_2)$.

A circular conductor in the x-y plane is embedded in an external magnetic field $\vec{B} = 0.2 \cdot \cos(120\pi t) \vec{a}_z T$. Assume that the conductor joining the two ends of the resistor R is perfect (the magnetic field produced by I(t) is negligible).

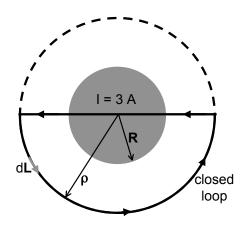


(a) Find both $V_{ab}(t)$ and I(t) as a function of time t.

(b) In which direction does the induced current flow if the magnetic field (pointing out of the paper plane) decreases in time ?

(c) How would the result from a) change if \vec{B} would point into the \vec{a}_x direction ?

A long straight wire of circular cross-section carries a uniformly distributed current of 3 A into the paper plane and has a radius of R = 3 cm. The closed loop shown in the sketch is a semi-circle of radius $\rho = 4$ cm that passes through the center of the wire. For this closed loop without using Ampere's law, find (a) the magnetic field along the circular arc, (b) the line integral of \vec{B} along the arc and (c) the line integral of \vec{B} along the straight section. Find the line integral around the entire loop and explain how your result agrees with Ampere's law.



(5/45)

A 1.5 pF plate capacitor is connected to a time varying voltage source $V(t) = 12 V \cdot cos(2\pi ft)$, where f = 60 Hz. Calculate the displacement current inside the capacitor for a plate area of 1 mm². Assume that the field is homogeneous and that the charging time of the capacitor is much shorter than 1/f.

(8/45)

A long straight conductor of 0.2 mm radius carries a uniformly-distributed current of 2A (constant).

- (a) Find \vec{J} within the conductor
- (b) Find the vector magnetic field inside the conductor
- (c) Show that $\nabla\times\vec{H}=\vec{J}$ within the conductor.

Useful equations:

Divergence

$$\nabla \cdot \vec{D} = \frac{\partial D_x}{\partial x} + \frac{\partial D_y}{\partial y} + \frac{\partial D_z}{\partial z}$$
$$\nabla \cdot \vec{D} = \frac{1}{\rho} \frac{\partial}{\partial \rho} (\rho D_\rho) + \frac{1}{\rho} \frac{\partial D_\phi}{\partial \phi} + \frac{\partial D_z}{\partial z}$$
$$\nabla \cdot \vec{D} = \frac{1}{r^2} \frac{\partial}{\partial r} (r^2 D_r) + \frac{1}{r \sin \theta} \frac{\partial}{\partial \theta} (D_\theta \sin \theta) + \frac{1}{r \sin \theta} \frac{\partial D_\phi}{\partial \phi}$$

Gradient

$$\nabla V = \frac{\partial V}{\partial x}\vec{a}_x + \frac{\partial V}{\partial y}\vec{a}_y + \frac{\partial V}{\partial z}\vec{a}_z$$
$$\nabla V = \frac{\partial V}{\partial \rho}\vec{a}_\rho + \frac{1}{\rho}\frac{\partial V}{\partial \phi}\vec{a}_\phi + \frac{\partial V}{\partial z}\vec{a}_z$$
$$\nabla V = \frac{\partial V}{\partial r}\vec{a}_r + \frac{1}{r}\frac{\partial V}{\partial \theta}\vec{a}_\theta + \frac{1}{rsin\theta}\frac{\partial V}{\partial \phi}\vec{a}_\phi$$

Curl

$$\nabla \times \vec{H} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right) \vec{a}_x + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) \vec{a}_y + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) \vec{a}_z$$
$$\nabla \times \vec{H} = \left(\frac{1}{\rho} \frac{\partial H_z}{\partial \phi} - \frac{\partial H_\phi}{\partial z}\right) \vec{a}_\rho + \left(\frac{\partial H_\rho}{\partial z} - \frac{\partial H_z}{\partial \rho}\right) \vec{a}_\phi + \frac{1}{\rho} \left[\frac{\partial(\rho H_\phi)}{\partial \rho} - \frac{\partial H_\rho}{\partial \phi}\right] \vec{a}_z$$
$$\nabla \times \vec{H} = \frac{1}{rsin\theta} \left[\frac{\partial(H_\phi sin\theta)}{\partial \theta} - \frac{\partial H_\theta}{\partial \phi}\right] \vec{a}_r + \frac{1}{r} \left[\frac{1}{sin\theta} \frac{\partial H_r}{\partial \phi} - \frac{\partial(rH_\phi)}{\partial r}\right] \vec{a}_\theta + \frac{1}{r} \left[\frac{\partial(rH_\theta)}{\partial r} - \frac{\partial H_r}{\partial \theta}\right] \vec{a}_\phi$$