EE162A Midterm

91

Spring 2018

28

Problem #1 (34 points). A dipole antenna and a circular loop antenna are both designed to operate at 1MHz. Each antenna has a maximum dimension of 1 meter and is made of 4mm diameter copper wire.

- (a) What are the directivities of both antennas? +6
- (b) Compute the impedance of both antennas. + 6
- (c) Find the radiation efficiency of both antennas. + 4
- (d) If both antennas are radiating the same amount of power of 100Watt, find the strength of the maximum electric field at 10 meter away for both antennas and compare them. +6
- (e) Redo the loop antenna case for (b)-(d) when the loop is now made of 10 turns. +6

b)
$$Z = R + j \times 0$$
 $D_{ips} le : Rs = \int \frac{\omega_{in}}{2\sigma}$
 $= \int \frac{2\pi(1 M ln)(4\pi x_{i} s^{7})}{2(5.5x_{i} s^{7})}$
 $= Z.61 \times 1s^{-4}$
 $= \frac{2.61 \times 1s^{-4}}{2\pi \alpha} L$
 $= \frac{2.61 \times 1s^{-4}}{2\pi (2\pi s^{3})}$
 $= 0.021$
 $R = 80 \pi^{2} (\frac{1}{2})^{2} \qquad A = 700 L$
 $= 8.77 \times 1s^{-7}$
 $\times = -\frac{120}{112} (L_{i} \frac{1}{2} - 1)$
 $= -51812$
 $Z = 0.03 - j.51812$

$$Z = R + j \omega L$$

$$Loop: R = 2.61 \times 10^{-4}$$

$$R_{1.55} = \frac{R^{5}}{2\pi (2\pi b)}$$

$$= \frac{2.61 \times 10^{-4}}{2\pi (2x b^{-7})} (2\pi (0.5))$$

$$= 0.065$$

$$R = 31200 (\frac{5}{300})^{2}$$

$$= 2138 \times 10^{-6}$$

$$L = \mu b (ln \frac{81}{00} - 2)$$

$$= 3.52 \times 10^{-6}$$

$$Z_{10} = 0.067 + j (2\pi (1 \times 10^{6}))(3.72 \times 10^{-6})$$

$$= 0.067 + j (2\pi (1 \times 10^{6}))(3.72 \times 10^{-6})$$

$$= 0.067 + j (2\pi (1 \times 10^{6}))(3.72 \times 10^{-6})$$

$$= 0.067 + j (2\pi (1 \times 10^{6}))(3.72 \times 10^{-6})$$

$$= 0.067 + j (2\pi (1 \times 10^{6}))(3.72 \times 10^{-6})$$

$$5 = \frac{P}{4\pi/L} D$$

$$= \frac{100}{4\pi/100^{2}} (1.5)$$

Problem #2 (33 points) A 20Km long communication link is setup with two aperture antennas with all components properly matched. If Pt=1W and f=4GHz and the transmitted antenna has a gain of 20dB. Determine

- (a) What is the power density at the receiving antenna assuming proper alignment? +8
- (b) If the noise temperature of the receiver is 500K and the receiver bandwidth is 20MHz, in order to achieve a signal to noise ratio of 30dB, how much gain is required for the receiving +8 antenna?
- (c) What is the minimum area required for the receiving antenna? +8
- (d) If frequency is changed to 12GHz, with everything else staying the same including the area of the receiving antenna, how far can this communication link be constructed now? + 6

A)
$$L = 46 \text{ Mz} \Rightarrow \lambda = 0.075 \text{ m}$$
 $S = \frac{P_{+}}{4\pi R^{2}} G_{+}$
 $G_{+} = \frac{1}{4\pi (10h)^{2}} (10 \cdot 0)$
 $= \frac{1}{4\pi (10h)^{2}}$

đ.

Contined or makes

c)
$$Aer = \frac{\lambda^2}{4\pi} Gr$$

$$= \frac{6.93 \times 10^{-3} \text{ m}^2}{10^{-3} \text{ m}^2}$$
d) $f = 126 \text{ Hz} \Rightarrow \lambda = 0.025 \text{ m}$
 $P_r = P_t \text{ (RA)}^2 \text{ Aet Ae}$
 $P_r, P_t, \text{ Aet, Ae all stay the sume}$

$$=) \text{ Take ratio of } \frac{P_{r,old}}{P_{r,new}}$$

$$1 = \frac{(R_{new} \lambda_{now})^2}{(R_{old} \lambda_{old})^2}$$

$$R_{new}^2 = \left(\frac{R_{la} \lambda_{old}}{\lambda_{new}}\right)^2$$

Problem #3 (33 points). For a linear, uniform array of 8 elements.

- (a) Plot the universal array factor. +8
- (b) Assume that the spacing between adjacent elements is half-wavelength spacing, plot the array factor of the radiation pattern in polar plot when the antenna beam is pointing to the broadside.
- (c) What if the beam is pointing to +60 degree away from broadside? What is the progressive phase shift in this case? Show the radiation pattern in polar plot derived from universal factor.
- (d) Design the array in the manner of an ordinary endfire array and a Hansen-Woodyard array. +9

8 elements > 8 /shes

b) d==== 3 Bd=T

Bradide: 8=90' > x=2

Continued or back

d) Ordnery EndFin:
$$\theta_0 = 0$$
, 180° $\alpha = \pm \beta d$ $= \pm \pi = \pm \pi + \beta$ griting bles (decresse d)

