EE 141 – Midterm Fall 2009

04/11/09

Duration: 1 hour and 40 minutes

The midterm is closed book and closed lecture notes. No calculators. You can use a single page of handwritten notes. Please carefully justify all your answers.

Problem 1: Consider the truck represented in Figure 1. We model the connection between the trailer and the truck by a spring with restitution coefficient K and a damper with damping coefficient b. The truck has mass m_1 and the trailer has mass m_2 . The truck engine applies a force f as represented in Figure 1. In addition to the force f, there is also a friction force acting on the truck and a friction force action on the trailer. The friction forces are proportional to the velocity with proportionality constant c.

Figure 1: Truck model for Problem 1.

- 1. What are the differential equations describing the evolution of the truck position x_1 and the trailer position x_2 ?
- 2. What is the transfer function from f to x_2 ?
- 3. Knowing that K = 13000 N/m, b = 1100 Ns/m, c = 160 Ns/m, $m_1 = 2000 Kg$, and 3000 Kg, what is $\lim_{t\to\infty} \frac{d}{dt}x_2$ when you apply a step input of magnitude 5?

Problem 2: Consider the block diagram in Figure 2.

Figure 2: Left: block diagram for Problem 2. Right: overshoot vs damping ration for a second order system with no zeros.

- 1. Compute the transfer function from from R to Y.
- 2. Assume now that the transfer function from R to Y is given by:

$$\frac{Y}{R} = \frac{b_0}{a_2 a^2 + a_1 s + a_0},$$

and that you can design the parameters b_0, a_2, a_1 , and a_0 . Which values would you choose for these parameters so that the following specifications are met:

- (a) $\lim_{t\to\infty} y(t) = 2$ when the input is a unit step;
- (b) rise time smaller than 1.8 seconds;
- (c) overshoot smaller than 5%;
- (d) settling time smaller than 10 seconds.

Problem 3: Consider the following transfer function:

$$H(s) = \frac{s^2 + 12s + 10}{s^3 + 4s^2 + 14s + 20}$$

- 1. Is the system described by H(s) stable?
- 2. Can you track step inputs with a proportional controller in a unit feedback loop?
- 3. Design a controller to be used in a unit feedback loop so that the closed-loop system can track step inputs.

1.1]

Truck:

 $f = b_1(\dot{x}_1 - \dot{x}_2) - K(\dot{x}_1 - \dot{x}_2) - b_2\dot{x}_1 = m_1\dot{x}_1 - \cdots 0$

Trailer:

- $b_1(x_1 x_2) + K(x_1 x_2) b_2 x_2 = m_2 x_2 \dots (2)$
- $(): f(t) + 1100 x_2(t) + 13000 x_2(t) = 2000 x_1(t) + 160 x_1(t) + 13000 x_1(t$

(2)
$$1100 x_1(t) + 13000 x_1(t) = 3000 x_2(t) + 1260 x_2(t) + 13000 x_2(t)$$

$$1.27 \quad \textcircled{O} \quad F(s) + 1100 \quad SX_2(s) + 13000 \quad X_2(s) = 2000 \quad S^2 \quad X_1(s) + 1260 \quad SX_1(s) + 13000 \quad X_1(s) + 13000 \quad X_1(s)$$

(a)
$$1100 \le X_1(s) + 13000 \times (s) = 3000 \le^2 X_2(s) + 1260 \le X_2(s) + 13000$$

 $X_1(s) [1100S+ 13000] = X_2(s) [3000 \le^2 + 1260 \le + 13000]$

From 1 and 2:

$$F(s) + X_{2}(s) [1100 s + 13000] = X_{2}(s) [3000 s^{2} + 1260 s + 13000] \times [2000 s^{2} + 1260 s + 13000]$$

$$I100 s + 13000$$

$$F(s) = X_{2}(s) \left[m_{1}m_{2}S^{4} + S^{2}(m_{1}+m_{2})[S(b_{1}+b_{2})+K] + [S(b_{1}+b_{2})+K]^{2} - [Sb_{1}+K]^{2} \right]$$

Sb,+K

$$= \chi_{2}(s) \left[m_{,m_{2}}S + s(m_{,}+m_{2})[s(b_{1}+b_{2})+k] + 2sb_{2}(sb_{1}+k) + s^{2}b_{2}^{2} \right]$$

$$= Sb_{,}+K$$

$$= X_{2}(s) \left[m_{1}m_{2}S^{4} + S^{3} \left[m_{1}tm_{2} \right] \left[b_{1}tb_{2} \right] + S^{2} \left[K(m_{1}tm_{2}) + b_{2}^{2} + 2b_{1}b_{2} \right] + 2 b_{2}K s \right]$$

$$= X_{2}(s) \left[m_{1}m_{2}S^{4} + S^{3} \left[m_{1}tm_{2} \right] \left[b_{1}tb_{2} \right] + S^{2} \left[K(m_{1}tm_{2}) + b_{2}^{2} + 2b_{1}b_{2} \right] + 2 b_{2}K s \right]$$

$$= Sb_{1}tK$$

$$\therefore X_{2}(s) = \frac{1100 \text{ s} + 13,000}{\text{F}(s)} = \frac{1100 \text{ s} + 13,000}{6,000,000 \text{ s}^{4} + 6,300,000 \text{ s}^{3} + 65,377,600 \text{ s}^{2} + 4,160,000 \text{ s}}{1.3]} \text{ fim } x_{2}(t) = \text{ tim}[s:S X_{2}(s)] = \text{ fim } s. [1] \text{ F}(s) = \text{ fim } s. [2] \text{ J} \text{ . 8000}{\text{ s} - 5} = \frac{13,000 \text{ x} 8000}{5 \text{ s} - 5} = 2.5 \text{ m/s}$$

$$= \frac{13,000 \text{ x} 8000}{4160000} = 2.5 \text{ m/s}$$

Problem 2 $Y = \int (R - DEY + AY)B - EY]C$ (1) $\Rightarrow Y = \frac{BC}{1 + BCDE - ABC + CE} R$ $\frac{Y(s)}{R(s)} = \frac{B(s) C(s)}{1 + B(s) C(s) D(s) E(s) - A(s) B(s) C(s) + C(s) E(s)}$ (2) $\frac{Y_{15/}}{R_{15/}} = \frac{b_0}{a_2 s^2 + a_1 s + a_0} = \frac{\frac{b_0}{a_2}}{s^2 + \frac{a_1}{a_2} s + \frac{a_0}{a_2}} = \frac{\frac{b_0}{a_2}}{s^2 + \frac{a_1}{a_2} s + \frac{a_0}{a_2}}$ Specification (a) =) $y(m) = \lim_{s \to 0} 5 \frac{b_0}{a_1 s^2 + a_1 s + a_0} \frac{1}{s} = \frac{b_0}{a_0} = 2$ specification (b) => tr = 1.8 = 1.8 =) Wn > | specification (c) => Mp < 0.05 => 3 > 0.7 specification (d) =) $t_s = \frac{4.6}{2} \ll_n < 0 = 3 \ll_n 7 0.46$ (d) is satisfied if (b) (c) are satisfied Pick 3 = 0.7, Wn = 1 $(a) \stackrel{=}{=} \frac{b_{0}}{a_{0}} = 2$ $(b) \stackrel{=}{=} \frac{a_{0}}{a_{2}} = W_{n}^{2} = 1$ $(b)(c) =) \frac{\alpha_1}{\alpha_2} = 2\frac{3}{2}\omega_n = 1.4$ Then we can select $a_2 = |$, then $a_0 = |$, $a_1 = 1.4$, $b_0 = 2$

3] 1. $G_{1}(s) = s^{2} + 12s + 10$
$5^{3} + 45^{2} + 14 + 20$
Using Routh's criterion:
53114
s' 9
5° 20
- All clements of the 1st column and all of the coefficients of
the characteristic polynomial are >0
: The system is stable.
alternatively: solving S+45+14s+20=0
-2 is a root: 52+25+10
$(5t_2)(s_1^2 + 2s_1) = 0 \qquad \frac{5t_2}{s_1^3 + 4s_1^2 + 14s_1^2}$
Solving $5^{2}+25+10=0$ $2s^{2}+14+5+20$ $2s^{2}+4s$ 10s+20
$S = -2 \pm \sqrt{4^{*} - 4^{\circ}} = -1^{\pm} 3i$
. the roots of the characteristic polynomial are -2, -1+3i, -1-3i
and they are all in the left hand plane -> .: the system is stable

X + E K G Y

3.2.

 $\frac{E}{\lambda} = \frac{1}{1+KG_{1}} = \frac{1}{1+K\left[\frac{5^{2}+12s+10}{s^{3}+4s^{2}+14s+20}\right]} = \frac{\frac{5^{3}+4s^{2}+14s+20}{s^{3}+s^{2}(4+K)+s(14+12K)+(20+14K)}$ $\lim_{t\to\infty} e(t) = \lim_{s\to\infty} sE_{t0} = \lim_{s\to\infty} s. \underbrace{E}_{t} \cdot x = \lim_{s\to\infty} s. \begin{bmatrix} 1\\ 1\\ s \end{bmatrix} x = \frac{20}{20+10K}$ For the steady state error to be zero, K has to be equal to ∞ ! So the closed loop unity feed back system connot track a step input using only a proportional controller.

Alternatively: KGiss has no roots at s=0 -> .. This is a type O system ... the system cannot track a step input with zero error 3] 3. An integral controller would eliminate the steady state erros:

$$\frac{E}{X} = \frac{1}{1+G_{1}H} = \frac{1}{1+\frac{K}{5}G} = \frac{5^{4}+45^{3}+145^{2}+205}{5^{4}+45^{3}+(14+K)5^{2}+(20+12K)5+10K}$$

. check the range of K that guarantees the stability of the system: apply Routh criterion:

> 5^{4} 1 14+K 10K 5^{3} 4 20+12K 5^{2} 9-2K 10K 5^{1} $\frac{-24_{1}K}{3-2K}$ 5° 10K

 $(2) 9 - 2K > 0 \rightarrow K < 9/2$ $(3) - 24K^{2} + 28K + 180 > 0 \rightarrow from (2) \rightarrow -24K^{2} + 28K + 180 > 0$ $(3) - 24K^{2} + 28K + 180 > 0 \rightarrow from (2) \rightarrow -24K^{2} + 28K + 180 > 0$

 $6 \kappa^2 + 7 \kappa - 46 < 0 \rightarrow = -2.22 < K < 3.38$

1. OLK23.38

choose K=1: $\lim_{t\to\infty} e(t) = \lim_{s\to\infty} sE(s) = \lim_{s\to\infty} s \times \frac{s^{4}+4s^{3}+14s^{2}+20s}{s^{4}+4s^{3}+15s^{2}+34s+10} \times \frac{1}{s}$