




Prob 1.

We denote by x the position of the car, by ẋ its velocity, and by ẍ its accelera-

tion. Hence, by Newton’s law of motion we have:

mẍ = �bẋ+ f,

where f is the force exerted by the car’s engine.

Prob 2.

a)

We now use x for the position of car 1 and y for the position of car 2. Using

Newton’s law again we obtain:

mẍ = u� bẋ� k(x� y)� d(ẋ� ẏ) (1)

mÿ = �bẏ � k(y � x)� d(ẏ � ẋ) (2)

b) Since we have two cars, we reproduce the equations derived in Problem 1

twice (once for each car):
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mẍ = f1 � bẋ (3)

mÿ = f2 � bẏ. (4)

In order for the two cars described by equations (3) and (4) to behave like the

system in Figure 1 in the exam, we need to design the inputs f1 and f2 so that

equations (3) and (4) become equal to the equations (1) and (2). This leads to:

f1 = u� k(x� y)� d(ẋ� ẏ) (5)

f2 = �k(y � x)� d(ẏ � ẋ). (6)

Prob 3.

If the controllers (5) and (6) are being used, the equations of motion describing

the evolution of the cars’ positions are (1) and (2). Subtracting (2) from (1) we

obtain:

m(ẍ� ÿ) = u� b(ẋ� ẏ)� 2k(x� y)� 2d(ẋ� ẏ) (7)

If we replace x� y with z, equation (7) becomes:

mz̈ =u� bż � 2kz � 2dż (8)

u =mz̈ + (b+ 2d)ż + 2kz. (9)

Applying the Laplace transform on both sides (assuming zero initial conditions)

we obtain:

U = (ms2 + (b+ 2d)s+ 2k)Z.

Therefore, the transfer function from u to z is

Z

U
=

1/m

s2 + b+2d
m s+ 2k

m

.

Prob 4. The output Z to a ramp input U =
1
s2 is given by:

Z(s) =
1/m

s2 + b+2d
m s+ 2k

m

1

s2
. (10)
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We can perform a partial fraction expansion to obtain:

Z(s) =
c1

s� p1
+

c2
s� p2

+
c3
s
+

c4
s2
, (11)

where c1, c2, c3 and c4 are constants and p1 and p2 are the roots of s2+
b+2d
m s+ 2k

m .

Applying the inverse Laplace transform we obtain:

z(t) = c1e
p1tu(t) + c2e

p2tu(t) + c3u(t) + c4tu(t).

In order to have limt!1 z(t) = 0 we need Re(p1) < 0, Re(p2) < 0, c3 = 0, and

c4 = 0. The constant c4 is given by:

c4 = s2Z(s)
��
s=0

=
1/m

s2 + b+2d
m s+ 2k

m

�����
s=0

= 1/2k,

and we see that we cannot make c4 to be zero by choosing the value of the

constant k.

Prob 5. Let’s first try a proportional controller with gain Kp. The closed-loop

transfer function is:

1/m
s2+ b+2d

m s+ 2k
m

Kp

1 +
1/m

s2+ b+2d
m s+ 2k

m

Kp

=

1
mKp

s2 + b+2d
m +

2k+Kp

m

. (12)

For a ramp input U =
1
s2 we obtain:

Z =

1
mKp

s2 + b+2d
m +

2k+Kp

m

1

s2
. (13)

Performing again a partial fraction expansion:

Z(s) =
c1

s� p1
+

c2
s� p2

+
c3
s
+

c4
s2
, (14)

where p1 and p2 are the roots of s2 + b+2d
m s+ 2k+kp

m , we observe that c4 must be

zero for limt!1 z(t) to be bounded. Computing c4 as in the previous question

we obtain:

c4 =
Kp

2k +Kp
,
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which is only zero if Kp = 0 which is not possible: if the controller is placed

on the feedback path this corresponds to having no controller; if the controller

is placed on the feedforward path this corresponds to disconnecting the input

from the plant.

Hence, we now seek a PD controller. The output produced by a ramp is:

Z =

1/m
s2+ b+2d

m s+ 2k
m

(Kds+Kp)

1 +
1/m

s2+ b+2d
m s+ 2k

m

(Kds+Kp)

1

s2
(15)

=

1
m(Kds+Kp)

s2 + b+2d+Kd

m s+ 2k+Kp

m

1

s2
(16)

=
c1

s� p1
+

c2
s� p2

+
c3
s
+

c4
s2
. (17)

In order for limt!1 z(t) to be bounded we need: 1) c4 = 0 and 2) Re(p1) < 0

and Re(p2) < 0.

The constant c4 is given by:

c4 = s2Z(s)
��
s=0

=
(Kds+Kp)/m

s2 + b+2d+Kd

m s+ 2k+Kp

m

�����
s=0

=
Kp

2k +Kp
,

and thus we take Kp = 0.

To enforce Re(p1) < 0 and Re(p2) < 0 we do a Routh test that provides:

b+ 2d+Kd

m
> 0,

2k

m
> 0.

Since k and m are positive, 2k/m is always positive. Hence, we only have the

constraint:

Kd > �b� 2d.

If Kd satisfies the above constraint and Kp = 0, the inverse Laplace transform

provides:

L�1{Z} = L�1

⇢
c1

s� p1
+

c2
s� p2

+
c3
s

�
= c1e

�p1tu(t) + c2e
�p2tu(t) + c3u(t),
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and limt!1 z(t) = c3. We can compute the constant c3 as:

sZ(s)|s=0 =

Kds
m

s2 + b+2d+Kd

m s+ 2k
m

1

s

�����
s=0

=
Kd

2k
. (18)

Therefore, we can achieve limt!1 |z(t)|  0.1 withKd  0.2k. Summarizing the

design, we have Kp = 0 and Kd can be any constant in the set [�b� 2d, 0.2k].

Prob 6.

We start with a proportional controller resulting in the closed-loop transfer

function:

Z

R
=

1
mKp

s2 + b+2d
m s+ 2k+Kp

m

. (19)

The error is given by:

E(s) = R� Z =

 
1�

1
mKp

s2 + b+2d
m s+ 2k+Kp

m

!
R (20)

=
s2 + b+2d

m s+ 2k
m

s2 + b+2d
m s+ 2k+Kp

m

R. (21)

To make the system stable we first do a Routh test that leads to:

b+ 2d

m
> 0,

2k +Kp

m
> 0.

Since all the constans are positive, this lead to the constraint:

Kp > �2k.

Assuming that we pick Kp satisfying this constraint, the system is stable and
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we can use the Final Value Theorem to compute the steady state error:

ess = lim
s!0

sE(s) = lim
s!0

s
s2 + b+2d

m s+ 2k
m

s2 + b+2d
m s+ 2k+Kp

m

1

s
(22)

=
2k

2k +Kp
(23)

=
400

400 +Kp
(24)

Since we want |ess| =
��� 400
400+kP

���  0.01, we need a gain Kp satisfying:

Kp � 39600. (25)

Since we have a transfer function with 2 zeros and no poles, we can relate the

settling time ts to !n and ⇣ by:

ts =
4.6

!n⇣
< 10.

We note that:

2!n⇣ =
b+ 2d

m
= 1.12 =) 4.6

!n⇣
=

4.6

0.56
< 10, (26)

and the settling time specification is already satisfied.

For the rise time we have tr = 1.8/!n  1 leading to:

!n � 1.8 (27)
r

2k +Kp

m
� 1.8 (28)

2k +Kp

m
� 1.82 (29)

2k +Kp � m1.82 (30)

Kp � m1.82 � 2k (31)
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We know that 2 � 1.8 implies 4 = 2
2 � 1.82, hence it su�ces to find Kp

satisfying:

Kp � 10000 · 4� 400 = 3600.

Summarizing, we need to choose Kp satisfying:

Kp � max{39600, 3600} = 39600.
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