
EE 141 – Final

06/12/08
Duration: 3 hours

The final is closed book and closed lecture notes. No calculators.
You can use a single page of handwritten notes.

Please carefully justify all your answers.

Problem 1: (30 points) The linearized equations describing the vertical of motion of a
hot-air balloon are given by:

τ1Ṫ = −T + u

τ2z̈ + ż = aT + w

were T represents the deviation of the hot-air temperature from the equilibrium temperature,
z represents the altitude of the balloon, u represents the deviation of the burner heating rate
from the equilibrium rate, and w is the wind speed. In what follows we will assume that
w = 0 and to simplify the computations the parameters τ1, τ2, and a will assume the following
unrealistic values:

τ1 = 0.1 τ2 = 0.2 a = 10

1. (6 points) Compute the transfer function from the input u to the balloon’s altitude.

The Laplace transform of the first and second differential equations gives:

T

U
=

1

τ1s + 1

Z

T
=

a

s(τ2s + 1)
,

assuming zero initial conditions and w = 0. Therefore:

Z

U
=

Z

T

T

U
=

10

s(0.1s + 1)(0.2s + 1)

2. (12 points) Design a compensator for a unity-feedback loop so that the steady-state
error to a parabola is 0.2.
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Let D be transfer function of the compensator and let G = Z/U . For a unity-feedback
configuration we have:

Z

R
=

DG

1 + DG

E

R
=

R− Z

R
=

1 + DG−DG

1 + DG
=

1

1 + DG

We want to design D so that:

lim
t→∞

e(t) = lim
s→0

s
1

1 + DG

1

s3
= lim

s→0

1

1 + DG

1

s2
= 0.2

We first note that:

lim
s→0

1

1 + DG

1

s2
= lim

s→0

(0.1s + 1)(0.2s + 1)

s2(0.1s + 1)(0.2s + 1) + 10sD(s)

If D(s) is a simple gain, the above limit is not finite, therefore we pick D(s) = K/s to
obtain:

lim
s→0

1

1 + DG

1

s2
=

1

10K
,

and we conclude that K = 1/2.

3. (12 points) Synthesize compensators C and D, as in Figure 1, so that the closed loop
transfer function becomes:

5

s3 + 15s2 + 50s + 50

We write the plant as Bg(s)/Ag(s) and the desired closed-loop as Bh(s)/Ah(s). The
first step is to decompose Bg, Bh and Ad as Bg = B+

g B−
g , Bh = B+

g B′
h and Ad = B−

g A′d
where:

B+
g = 10 B−

g = 1 B′
h =

1

2
The first equation to be solved is:

A′dAg + BdB
+
g = Ah

If we chose A′d = a and Bd = b we obtain:

as(0.1s + 1)(0.2s + 1) + b10 = s3 + 15s2 + 50s + 50

The solution is:
a = 50 b = 5

Compensator D is thus given by:

D =
Bd

Ad

=
Bd

B−
g A′d

=
5

50
=

1

10

Compensator C is given by:

C =
B′

h

Bd

=
1/2

5
=

1

10
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C D G+r y

Figure 1: Closed-loop system for Problem 1.

Problem 2: 35 points

1. (10 points) Sketch the Bode plot for the system described by the transfer function:

H(s) =
30(s + 1)

s2 + 8s + 25

knowing that log10(30/25) ≈ 0.1.
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Figure 2: Bode plot for Problem 2.

2. (5 points) How would your Bode plot change if the zero s = −1 is replaced by the zero
s = 1?

The magnitude would remain unaltered, but the phase evolution of the zero would be a
change from −180o at low frequencies to −270o at high frequencis with −225o at ω = 1.
This can be easily seen by noting that for ω << 1, (jω − 1) ≈ −1 and for ω >> 1,
jω − 1 ≈ jω.

3. (10 points) Based on your plot, compute the phase margin and the gain margin. What
can you conclude regarding stability of this system for various values of a controller gain
K in a unity-feedback loop? Justify your answer.
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The gain margin is infinite since the phase never reaches −180o. This means that this
system is stable for all positive values of a control gain K. The phase margin is about
100o.

4. (10 points) Use the Routh test to verify your previous answer.

For a unity-feedback loop the closed-loop transfer function is:

KG

1 + KG
=

K30(s + 1)

s2 + 8s + 25 + K30(s + 1)

The Routh table for the above characteristic polynomial is:

2 1 30K + 25
1 30K + 8 0
0 30K + 25

Stability is ensured if all the elements in the first column (to the right of the line) are
positive. This requires K > −8/30 and K > −25/30 which is clearly satisfied for all
positive K. The Routh test thus confirms the previous answer.
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Problem 3: (35 points) The Nyquist plot of the system represented by the transfer
function:

H(s) =
(s− 1)(s + 2)

(s + 1)(s− 4)(s− 5)

is shown in Figure 3. The plot crosses the horizontal axis approximately at the points −0.125,
−0.1 and 0.
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Figure 3: Nyquist plot for Problem 3.

1. (14 points) Determine the number of unstable closed-loop poles for all positive values
of a control gain K.

The plant has 2 poles on the right side of the complex plane and the number Z of
closed-loop poles is given by N = Z − 2 ⇔ Z = N + 2 where N is the number of
times that a particular point on the negative horizontal axis is encircled by the Nyquist
diagram. Inspecting the diagram we observe that all the points smaller than −0.125 are
encircled 0 times, all the points between −0.125 and −0.1 are encircled −2 times and all
the points between −0.1 and 0 are encircled −1 times. Since a point −p on the negative
horizontal axis corresponds to a control gain −1/K we conclude that for gains between
0 and 8 there are 0 + 2 = 2 unstable closed-loop poles, for control gains between 8 and
10 there are −2 + 2 = 0 unstable closed-loop poles, and for control gains larger than 10
there are −1 + 2 = 1 unstable closed-loop poles.

2. (14 points) Verify the answer to the above question by sketching a root-locus. Justify
your answer.
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Figure 4: Root locus plot for Problem 3.

Observing the root locus we see that we start with two unstable poles (gain between 0
and 8 as computed in the previous question), by increasing the gain these poles become
stable (gain between 8 and 10 as computed in the previous question), and by further
increasing the gain, the third pole that was stable becomes unstable (gain larger than 10
as computed in the previous question). The root-locus thus confirms the analysis done
on the Nyquist diagram.

3. (7 points) Which Bode plot in Figure 5 corresponds to the Nyquist plot in Figure 3?

The third plot is excluded since it starts with a phase of 0o and non-neglible amplitude.
However, the Nyquist plot does not contain points on the right side of the complex plane.
For the same reason the first plot is excluded. It contains points with non-neglibible
amplitude for phases between 90o and 0o. The Bode plot thus correspond to the second
plot.
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Figure 5: Bode plots for Problem 3.
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