
ECE 141 - Feedback Control
Midterm Solutions

Problem (1 - Bungee Jumping).

Solution (Vers. A & B). Construct an ODE modeling the dynamics of the jumper via Newton’s Laws.

mẍ(t) = −kx(t)− bẋ(t) +mg · θ(t)

m > 0 is the mass of the jumper, k > 0 is the elastic constant of the cord, b > 0 is the coefficient of
aerodynamic drag, and mg is the force of gravity (that acts on the jumper after t = 0), and θ is the
Heaviside Step Function, i.e. θ(t ≥ 0) = 1 and θ(t < 0) = 0.

Assuming zero initial conditions, i.e. the jumper initiates with zero velocity on the top of the bridge or
cliff in the depicted coordinate frame, we take the Laplace Transform of the ODE.

ms2X(s) = −kX(s)− bsX(s) + mg

s
=⇒ X(s) = mg

s (ms2 + bs+ k)

sX(s) has stable poles, because X(s) has stable poles except one marginally-stable pole at zero. Indeed,
given b > 0 and via the quadratic formula, the roots of the characteristic polynomial p(s) = ms2 + bs+ k

that excludes the marginally-stable pole at zero are
{
−b±

√
b2 − 4mk

2m

}
⊂ R<0 + iR. Equivalently, you

can compute the Routh Array and apply the Routh Criterion to deduce stability.

s2 m k
s1 b
s0 k

m, b, k > 0 =⇒ s X(s) is stable!

Necessarily, s2X(s) also has stable poles since sX(s) has stable poles. Applying the Final Value Theorem
on both X(s) and sX(s), we deduce that:

lim
t→∞

x(t) = lim
s→0

sX(s) = lim
s→0

mg

ms2 + bs+ k
= mg

k

lim
t→∞

ẋ(t) = lim
s→0

s · sX(s) = lim
s→0

mgs

ms2 + bs+ k
= 0

In other words, the position of the jumper converges to the position such that the elastic tension counteracts
the force of gravity, i.e. kx = mg. Moreover, the velocity of the jumper also converges to zero due to the
non-conservative kinetic energy sink of the aerodynamic drag. Hence, the state (x, ẋ) = (mg/k, 0) is a
stable equilibrium state of the system.

Assume we have control over the design of b and k, and want to design the frequency response of the
dynamics of the jumper. In this case, we can ignore the pole at zero, because the frequency response of
the system is invariant of constants. In other words, applying a Partial Fraction Decomposition separates
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the poles into a constant step with a pole at zero and an oscillatory component with complex poles, which
inverts to shifted sinusoidal functions that have the same frequency response as their un-shifted variants
modulo the zero-frequency term of the Fourier Series. Hence, it suffices to design and analyze only the
complex poles of the system. (Note that other types of inputs besides the step function can non-trivially
affect the frequency response, but that’s not relevant here.)

X(s) = mg

s (ms2 + bs+ k) = g

s
(
s2 + b

ms+ k
m

)
Utilizing our knowledge of transfer functions of second-order systems, we deduce that:

ω2
n = k

m
=⇒ ωn =

√
k

m
σ = ωnζ = b

2m =⇒ ζ = b

2
√
mk

To design the system to oscillate (and necessarily remain stable), we would need to have ζ ∈ (0, 1).

ζ = b

2
√
mk
∈ (0, 1) =⇒ 0 < b < 2

√
mk

To design the system to have no oscillations (and necessarily remain stable), we would need to have ζ ≥ 1.

ζ = b

2
√
mk
≥ 1 =⇒ b ≥ 2

√
mk

Both of these inequalities could have been deduced via analyzing the discriminant term of the quadratic
formula for the characteristic polynomial of the system.

To maximize the amount of time spent oscillating with large amplitude and high frequency, we can take
sufficiently small aerodynamic drag b or sufficiently large elastic constant k. Both will decrease ζ and
rotate the complex poles closer to the imaginary axis, which simultaneously reduces the exponential
decay of the dynamics while increasing the frequency of the oscillation. An inferior answer would be to
consider the settling time ts = 4.6/σ, because while it maximizes the time spent oscillating with non-trivial
amplitude, it does not consider or improve the frequency of oscillation due to σ being the R-component
of the complex poles of the system, and induces a design policy solely on b. You could also argue that
increasing m would decrease ζ (and decrease σ), but there is a trade-off in frequency versus exponential
decay in adjusting ωn =

√
k/m, since decreasing ωn decreases both the exponential decay (desirable) and

the frequency (undesirable) of the response.

Assume the force of gravity is a control input and compute the transfer function T (s) from mg/s to X.

X(s) = mg

s (ms2 + bs+ k) = 1
ms2 + bs+ k

· mg
s

=⇒ T (s) = 1
ms2 + bs+ k

To set ts ≤ 46/5 and tr ≤ 3/5, we would have:

ts = 4.6
σ

= 9.2m
b
≤ 46

5 =⇒ b ≥ m

tr = 1.8
ωn

= 1.8 ·
√
m

k
≤ 3

5 =⇒ k ≥ 9m

To set ts ≤ 23/5 and tr ≤ 9/5, we would have:

ts = 4.6
σ

= 9.2m
b
≤ 23

5 =⇒ b ≥ 2m

tr = 1.8
ωn

= 1.8 ·
√
m

k
≤ 9

5 =⇒ k ≥ m
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Solution (Vers. C & D). Construct an ODE modeling the dynamics of the jumper via Newton’s Laws.
Assuming that the coordinate frame of the jumper is calibrated to zero where the force of gravity is
symmetric to elastic tension, we deduce that:

mẍ(t) = −kx(t)− bẋ(t)

Necessarily, m > 0 is the mass of the jumper, k > 0 is the elastic constant of the cord, and b > 0 is the
coefficient of aerodynamic drag.

Assuming zero initial position x(0) = 0 and initial velocity ẋ(0) = v0, i.e. the jumper accelerates to initial
velocity v0 via an impulse of momentum, we take the Laplace Transform of the ODE.

m

[
s2X(s)− s ·��

�*0
x(0) − ẋ(0)

]
= −kX(s)− b

[
sX(s)−��

�*0
x(0)

]
=⇒ X(s) = mv0

ms2 + bs+ k

sX(s) has stable poles, because X(s) has stable poles. Indeed, given b > 0 and via the quadratic formula,

the roots of the characteristic polynomial p(s) = ms2 + bs + k are
{
−b±

√
b2 − 4mk

2m

}
⊂ R<0 + iR.

Equivalently, you can compute the Routh Array and apply the Routh Criterion to deduce stability.

s2 m k
s1 b
s0 k

m, b, k > 0 =⇒ X(s) is stable!

Necessarily, s2X(s) also has stable poles since sX(s) has stable poles. Applying the Final Value Theorem
on both X(s) and sX(s), we deduce that:

lim
t→∞

x(t) = lim
s→0

s ·X(s) = lim
s→0

mv0s

ms2 + bs+ k
= 0

lim
t→∞

ẋ(t) = lim
s→0

s · sX(s) = lim
s→0

mv0s
2

ms2 + bs+ k
= 0

Necessarily, the position of the jumper converges to zero, which is precisely where the elastic tension
counteracts the force of gravity such that the cord is relatively unstretched in the assumed stretched
coordinate frame of the jumper. Moreover, the velocity of the jumper also converges to zero due to the
non-conservative kinetic energy sink of the aerodynamic drag. Hence, the state (x, ẋ) = (0, 0) is a stable
equilibrium state of the system.

Assume we have control over the design of b and k, and want to design the frequency response of the
dynamics of the jumper.

X(s) = mv0
ms2 + bs+ k

= v0

s2 + b
ms+ k

m

Utilizing our knowledge of transfer functions of second-order systems, we deduce that:

ω2
n = k

m
=⇒ ωn =

√
k

m
σ = ωnζ = b

2m =⇒ ζ = b

2
√
mk

To design the system to oscillate (and necessarily remain stable), we would need to have ζ ∈ (0, 1).

ζ = b

2
√
mk
∈ (0, 1) =⇒ 0 < b < 2

√
mk
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To design the system to have no oscillations (and necessarily remain stable), we would need to have ζ ≥ 1.

ζ = b

2
√
mk
≥ 1 =⇒ b ≥ 2

√
mk

Both of these inequalities could have been deduced via analyzing the discriminant term of the quadratic
formula for the characteristic polynomial of the system.

To maximize the amount of time spent oscillating with large amplitude and high frequency, we can take
sufficiently small aerodynamic drag b or sufficiently large elastic constant k. Both will decrease ζ and
rotate the complex poles closer to the imaginary axis, which simultaneously reduces the exponential
decay of the dynamics while increasing the frequency of the oscillation. An inferior answer would be to
consider the settling time ts = 4.6/σ, because while it maximizes the time spent oscillating with non-trivial
amplitude, it does not consider or improve the frequency of oscillation due to σ being the R-component
of the complex poles of the system, and induces a design policy solely on b. You could also argue that
increasing m would decrease ζ (and decrease σ), but there is a trade-off in frequency versus exponential
decay in adjusting ωn =

√
k/m, since decreasing ωn decreases both the exponential decay (desirable) and

the frequency (undesirable) of the response.

Assume that the initial impulse momentum mv0 is a control input to the system and compute the transfer
function T (s) from mv0 to X.

X(s) = mv0
ms2 + bs+ k

= 1
ms2 + bs+ k

·mv0 =⇒ T (s) = 1
ms2 + bs+ k

To set ts ≤ 2/5 and tr ≤ 1/5, we would have:

ts = 4.6
σ

= 9.2m
b
≤ 2

5 =⇒ b ≥ 23m

tr = 1.8
ωn

= 1.8 ·
√
m

k
≤ 1

5 =⇒ k ≥ 81m

To set ts ≤ 46/5 and tr ≤ 18/5, we would have:

ts = 4.6
σ

= 9.2m
b
≤ 46

5 =⇒ b ≥ m

tr = 1.8
ωn

= 1.8 ·
√
m

k
≤ 18

5 =⇒ k ≥ m
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Problem (2 - Control Systems Design).

Solution. Version D

On simplifying the block diagram, we can see that the system is composed of a transfer function in series
with a unity feedback transfer function.

Figure 1: Simplified Diagram
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Transfer function from R to Y would be given by:

T (s) = 3
s3 + (4−K)s2 + 2s+K − 1

Applying Routh–Hurwitz Criteria, we get the following Table,

Routh-Hurwitz
s3 1 2
s2 4-K K-1
s1 9−3K

4−K 0
s K-1 0

Therefore for system stability, we need
K ∈ (1, 3)

The transfer function for the error in case of step input is given by

E(s) = 1
s
× s3 + (4−K)s2 + 2s+K − 4
s3 + (4−K)s2 + 2s+K − 1

For limt→∞ e(t) = lims→0 sE(s), we can find that K = 4, if we want the steady state error to be zero.
However this is not permissible as this would make the system to be unstable.

We know that, an integral controller helps drive down the steady state error to zero. Therefore we add an
integral controller to the system as shown below:

Figure 2: Integral Controller added to the system

On adding the integral controller, the transfer function for the error can be given by:

E(s) = R(s)× s4 + (4−K)s3 + 2s2 + (K − 1)s
s4 + (4−K)s3 + 2s2 + (K − 1)s+ 3Ki

We can see that the characteristic equation in this case is : s4 + (4−K)s3 + 2s2 + (K − 1)s+ 3ki

Before we move on to finding the steady-state error, we need to check if the system is stable or not. For
this, we can compute the Routh-Hurwitz criteria and you should get the first column as follows:
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First Column of Routh-Hurwitz Criteria
1
4−K
(3K − 9)/(K − 4)
(K2 − 4K + 3)/(K − 3) + (Ki(K2 − 8K + 16))/(K − 3)
3Ki

From the above table, we can see that we can choose some values for K and Ki such that the first
column has all positive values. So for example, if we choose K = 2 and ki = 0.2, then the first
column has all positive values and therefore the resulting system would be stable. So we can find con-
troller gains such that the system is stable. Now we can proceed to find the steady-state error of the system.

For a step-input, the error transfer function is:

E(s) = 1
s
× s4 + (4−K)s3 + 2s2 + (K − 1)s
s4 + (4−K)s3 + 2s2 + (K − 1)s+ 3Ki

Applying the theorem, limt→∞ e(t) = lims→0 sE(s), we can see that the steady state error is zero for the
values of K and Ki we have computed above, which is what we wanted. You need to show the existence
of valid value of K and Ki before calculating the steady state error.

For all the other versions, the logic above remains the same. So we have just mentioned the final transfer
functions and answers that you’ll get.

Solution. Version C
Transfer function from R to Y would be given by:

T (s) = −6
(K − 5)s3 + (2K − 12)s2 + (−K − 1)s− 2K + 6

For system stability, we need
K ∈ (3, 5)

Transfer function for E(s) is:

E(s) = 1
s
× (K − 5)s3 + (2K − 12)s2 + (−K − 1)s− 2K + 12

(K − 5)s3 + (2K − 12)s2 + (−K − 1)s− 2K + 6

For steady-state error to be zero, we need K = 6, which is not permissible.

On adding a integral controller, the transfer function for the error can be given by:

E(s) = 1
s
× (5−K)s4 + (12− 2K)s3 + (K + 1)s2 + (2K − 6)s

(5−K)s4 + (12− 2K)s3 + (K + 1)s2 + (2K − 6)s+ 6Ki

For estimating the stability, we compute the Routh-Hurwitz criteria and get the following:

First Column of Routh-Hurwitz Criteria
5−K
12− 2K
(3K − 21)/(K − 6)
(2(K2 − 10K + 21))/(K − 7) + (2Ki(2K2 − 24K + 72))/(K − 7)
6Ki

6



From the table above we can calculate a value of K and Ki such that the system is stable. For example,
if we choose K = 4 and Ki = 1/6, we can see that the resulting system is stable.

Using these values for K and Ki, if we compute the steady state error, we can see that it is zero.

Solution. Version B
Transfer function from R to Y would be given by:

T (s) = −(s+ 3)
s3 + (K + 2)s2 + (4K − 4)s+ 3K − 5

For system stability, we need
K ∈ (5/3,∞)

Transfer function for E(s) is:

E(s) = 1
s
× s3 + (K + 2)s2 + (4K − 3)s+ 3K − 2
s3 + (K + 2)s2 + (4K − 4)s+ 3K − 5

For steady-state error to be zero, we need K = 2/3, which is not permissible.

On adding a integral controller, the transfer function for the error can be given by:

E(s) = 1
s
× s4 + (K + 2)s3 + (4K − 4)s2 + (3K − 5)s
s4 + (K + 2)s3 + (4K − 4)s2 + (3K −Ki − 5)s− 3Ki

For estimating the stability, we compute the Routh-Hurwitz criteria and get the following:

First Column of Routh-Hurwitz Criteria
1
K + 2
Ki/(K + 2) + (4K2 +K − 3)/(K + 2)
−(14K + 17K2 − 12K3 +K2

i −Ki(K2 + 14K + 10)− 15)/(4K2 +K +Ki − 3)
−3Ki

From the table above we can calculate a value of K and Ki such that the system is stable. For example,
if we choose K = 2 and Ki = −1/12, we can see that the resulting system is stable.

Using these values for K and Ki, if we compute the steady state error, we can see that it is zero.

Solution. Version A
Transfer function from R to Y would be given by:

T (s) = −4
Ks3 + (5K + 1)s2 + (4K + 6)s− 4K + 8

For system stability, we need
K ∈ (−1/5, 2)

Transfer function for E(s) is:

E(s) = 1
s
× Ks3 + (5K + 1)s2 + (4K + 6)s− 4K + 12

Ks3 + (5K + 1)s2 + (4K + 6)s− 4K + 8
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For steady-state error to be zero, we need K = 3, which is not permissible.

On adding a integral controller, the transfer function for the error can be given by:

E(s) = 1
s
× Ks4 + (5K + 1)s3 + (6 + 4K)s2 + (8− 4K)s
Ks4 + (5K + 1)s3 + (6 + 4K)s2 + (8− 4K)s− 4Ki

For estimating the stability, we compute the Routh-Hurwitz criteria and get the following:

First Column of Routh-Hurwitz Criteria
K
5K + 1
(24K2 + 26K + 6)/(5K + 1)
((2(25K2 + 10K + 1))/(12K2 + 13K + 3))Ki + (2(−24K3 + 22K2 + 46K + 12))/(12K2 + 13K + 3)
−4Ki

From the table above we can calculate a value of K and Ki such that the system is stable. For example,
if we choose K = 1 and Ki = −1, we can see that the resulting system is stable.

Using these values for K and Ki, if we compute the steady state error, we can see that it is zero.
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