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Midterm solutions

Problem 1. Let A be a tall m× n matrix with linearly independent columns. Define

P = A(ATA)−1AT .

1. Show that the matrix 2P − I is orthogonal.

2. Use the Cauchy-Schwarz inequality to show that the inequalities

−‖x‖‖y‖ ≤ xT (2P − I)y ≤ ‖x‖‖y‖

hold for all m-vectors x and y.

3. Take x = y in part 2. Show that the right-hand inequality implies that ‖Px‖ ≤ ‖x‖ for all
m-vectors x.

Solution. We first note that P is symmetric and P 2 = P .

1. The matrix 2P − I is square and symmetric. We verify that (2P − I)(2P − I) = I:

(2P − I)(2P − I) = 4P 2 − 2P − 2P + I = I

because P 2 = P .

2. We apply the Cauchy-Schwarz inequality to the vectors x and (2P − I)y:∣∣xT (2P − I)y
∣∣ ≤ ‖x‖ ‖(2P − I)y‖ = ‖x‖ ‖y‖.

The last step uses the fact that multiplication with an orthogonal matrix preserves the norm
of a vector: ‖(2P − I)y‖ = ‖y‖.

3. If we plugging in y = x the inequality simplifies to xTPx ≤ ‖x‖2. Since P = P 2 = P TP , this
can be written as

‖Px‖2 = xTP TPx = xTPx ≤ ‖x‖2.



Problem 2. A lower triangular matrix A is bidiagonal if Aij = 0 for i > j + 1:

A =



A11 0 0 · · · 0 0 0
A21 A22 0 · · · 0 0 0
0 A32 A33 · · · 0 0 0
...

...
...

. . .
...

...
0 0 0 · · · An−2,n−2 0 0
0 0 0 · · · An−1,n−2 An−1,n−1 0
0 0 0 · · · 0 An,n−1 Ann


.

Assume A is a nonsingular bidiagonal and lower triangular matrix of size n× n.

1. What is the complexity of solving Ax = b?

2. What is the complexity of computing the inverse of A?

State the algorithm you use in each subproblem, and give the dominant term (exponent and coef-
ficient) of the flop count. If you know several methods, consider the most efficient one.

Solution.

1. We solve Ax = b by forward substitution:

x1 =
b1
A11

, x2 =
b2 −A21x1

A22
, x3 =

b3 −A32x2
A33

, . . . , xn =
bn −An,n−1xn−1

Ann
.

This takes 3n− 2 ≈ 3n flops.

2. We solve AX = I column by column. In column i, we have X1i = · · · = Xi−1,i = 0 and

Xii =
1

Aii
, Xi+1,i = −Ai+1,iXii

Ai+1,i+1
, Xi+2,i = −Ai+2,i+1Xi+1,i

Ai+2,i+2
, . . . , Xn,i = −An,n−1Xn−1,i

Ann
.

This takes 3(n− i)− 2 flops. Summing from i = 1 to n gives a total of (3/2)n2.
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Problem 3. Let B be an m× n matrix.

1. Prove that the matrix I +BTB is nonsingular. Since we do not impose any conditions on B,
this also shows that the matrix I + BBT is nonsingular.

2. Show that the matrix

A =

[
I BT

−B I

]
is nonsingular and that the following two expressions for its inverse are correct:

A−1 =

[
I 0
0 0

]
+

[
−BT

I

]
(I + BBT )−1

[
B I

]
,

A−1 =

[
0 0
0 I

]
+

[
I
B

]
(I + BTB)−1

[
I −BT

]
.

3. Now assume B has orthonormal columns. Use the result in part 2 to formulate a simple
method for solving Ax = b. What is the complexity of your method? If you know several
methods, give the most efficient one.

Solution.

1. Suppose (I + BTB)x = 0. Then

xT (I + BBT )x = ‖x‖2 + ‖BTx‖2 = 0

and this is only possible if x = 0.

2. We verify that AA−1 = I. Using the first expression

AA−1 =

[
I BT

−B I

]([
I 0
0 0

]
+

[
−BT

I

]
(I + BBT )−1

[
B I

])
=

[
I 0
−B 0

]
+

[
0

I + BBT

]
(I + BBT )−1

[
B I

]
=

[
I 0
−B 0

]
+

[
0 0
B I

]
=

[
I 0
0 I

]
.

Using the second expression

AA−1 =

[
I BT

−B I

]([
0 0
0 I

]
+

[
I
B

]
(I + BTB)−1

[
I −BT

])
=

[
0 BT

0 I

]
+

[
I + BTB

0

]
(I + BTB)−1

[
I −BT

]
=

[
0 BT

0 I

]
+

[
I −BT

0 0

]
=

[
I 0
0 I

]
.
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3. The second expression for A−1 simplifies because BTB = I:[
I BT

−B I

]−1
=

[
0 0
0 I

]
+

1

2

[
I
B

] [
I −BT

]
.

Therefore [
I BT

−B I

]−1 [
b1
b2

]
=

[
0
b2

]
+

1

2

[
I
B

]
(b1 −BT b2)

To multiply A−1 with b = (b1, b2) we take

x1 =
1

2
(b1 −BT b2), x2 = b2 + Bx1.

This requires 4mn flops (for the multiplications with B and BT ).
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Problem 4. We have defined the pseudo-inverse of a right invertible matrix B as the matrix

B† = BT (BBT )−1.

Note that B†B is a symmetric matrix. It can be shown that B† is the only right inverse X of B
with the property that XB is symmetric.

1. Assume A is a nonsingular n × n matrix and b is an n-vector. Show that the n × (n + 1)
matrix

B =
[
A b

]
is right invertible and that

X =

[
A−1 −A−1byT

yT

]
is a right inverse of B, for any value of the n-vector y.

2. Show that XB is symmetric (hence, X = B†) if

y =
1

1 + ‖A−1b‖2
A−TA−1b.

3. What is the complexity of computing the vector y in part 2 using an LU factorization of A?
Give a flop count, including all cubic and quadratic terms. If you know several methods,
consider the most efficient one.

Solution.

1. We verify that BX = I:

BX =
[
A b

] [ A−1 −A−1byT

yT

]
= I − byT + byT = I.

2. We work out the product XB:

XB =

[
A−1 −A−1byT

yT

] [
A b

]
=

[
I −A−1byTA (1− bT y)A−1b

yTA yT b

]
.

We have to verify that this is symmetric for the given value of y. The 1,1 block is symmetric
because AT y is a scalar multiple of A−1b and therefore A−1byTA is a scalar multiple of the
symmetric outer product A−1b(A−1b)T .

The 2,1 block is the transpose of the 1,2 block because

AT y =
1

1 + ‖A−1b‖2
A−1b

and

(1− bT y)A−1b = (1− ‖A−1b‖2

1 + ‖A−1b‖2
)A−1b =

1

1 + ‖A−1b‖2
A−1b.

3. The LU factorization costs (2/3)n3 flops. We compute x = A−1b using the standard method
by solving PLUx = b via forward and backward substitution (2n2 flops). To compute z =
A−Tx we solve UTLTP T z = x by forward and backward substitution, again in 2n2 flops.

The total is (2/3)n3 + 4n2 flops.
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