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Midterm solutions

Problem 1. Suppose A and B are m×n matrices with linearly independent columns. Do the following
matrices necessarily have linearly independent columns? If yes, explain why. If no, give a counterex-
ample.

1.

[
A
B

]
.

2.
[
A B

]
.

3.

[
A 0
0 B

]
.

4. ABT .

5. ATB.

Solution. To show that a matrix C has linearly independent columns, we show that Cx = 0 holds
only if x = 0. To show that the columns are linearly dependent, we give a specific nonzero x for which
Cx = 0.

1. Yes. [
A
B

]
x =

[
Ax
Bx

]
= 0 =⇒ Ax = 0, Bx = 0 =⇒ x = 0

because A and B have linearly independent columns. In fact it is sufficient that one of the two
matrices has linearly independent columns.

2. No. For example, if we take A = B =

[
1
1

]
, then

[
A B

]
x =

[
1 1
1 1

] [
x1
x2

]
= 0

for x = (1,−1).

3. Yes. [
A 0
0 B

] [
x1
x2

]
=

[
Ax1
Bx2

]
= 0 =⇒ Ax1 = 0, Bx2 = 0 =⇒ x1 = 0, x2 = 0.

4. No. See the example in part 2.

5. No. For example, if we take A =

[
1
1

]
and B =

[
−1
1

]
, then

ATB =
[

1 1
] [ −1

1

]
= 0.



Problem 2. Formulate the following problem as a set of linear equations. Find a polynomial

p(t) = x1 + x2t+ x3t
2 + · · ·+ xnt

n−1

that satisfies the following conditions on the values and the derivatives at m points t1, . . . , tm:

p(t1) = y1, p(t2) = y2, . . . , p(tm) = ym, p′(t1) = s1, p′(t2) = s2, . . . , p′(tm) = sm.

The unknowns in the problem are the coefficients x1, . . . , xn. The values of ti, yi, si are given.

1. Express the problem as a set of linear equations Ax = b. Clearly state how A and b are defined.

2. Suppose n = 2m and the m points ti are distinct. Is the matrix A in part 1 nonsingular? Explain
your answer.

Solution.

1. 

1 t1 t21 · · · tn−21 tn−11

1 t2 t22 · · · tn−22 tn−12
...

...
...

...
...

1 tm t2m · · · tn−2m tn−1m

0 1 2t1 · · · (n− 2)tn−31 (n− 1)tn−21

0 1 2t2 · · · (n− 2)tn−32 (n− 1)tn−22
...

...
...

...
...

0 1 2tm · · · (n− 2)tn−3m (n− 1)tn−2m





x1
x2
x3
...

xn−1
xn


=



y1
y2
...
ym
s1
s2
...
sm


.

2. The matrix is nonsingular. To show this, we verify that Ax = 0 only if x = 0. If Ax = 0, then
the polynomial p(t) = x1 + x2t+ · · ·+ xnt

n−1 is zero and has zero derivative at the m points t1,
. . . , tm. Therefore each point ti is a zero with multiplicity at least two. Counting roots with their
multiplicity, we would have at least n = 2m real roots. This is impossible for a polynomial of
degree at most n− 1, unless the polynomial is a constant zero.
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Problem 3. Let U be an m×n matrix with orthonormal columns. We do not assume that U is square.
Define

A = I + αUUT

where α is a scalar.

1. For what values of α is A orthogonal?

2. For what values of α is A nonsingular?

Solution.

1. α = −2 and α = 0.

ATA = (I + αUUT )(I + αUUT ) = I + 2αUUT + α2UUTUUT = I + α(2 + α)UUT .

This is equal to I for α = 0 and for α = −2.

2. α 6= −1.

First consider α 6= −1. Suppose Ax = x + αUUTx = 0. Multiplying with UT on the left and
using UTU = I shows that UTx = −αUTx. If α 6= −1, we must have UTx = 0, but then
x = −αUUTx = 0. This shows that A is nonsingular if α 6= −1.

One can also note that if α 6= −1, the matrix has an inverse, namely

I − α

1 + α
UUT .

Next, consider α = −1. In this case any x of the form x = Uy satisfies

Ax = x+ UUTx = Uy − UUTUy = Uy − Uy = 0.

Moreover, if we choose y 6= 0, then x = Uy 6= 0 because ‖x‖ = ‖Uy‖ = ‖y‖ 6= 0. This shows that
A is singular if α = −1.
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Problem 4. Let A be an m× n matrix with linearly independent columns. Define

B =

[
0 AT

A I

]
.

1. Show that B is invertible with inverse

B−1 =

[
−(ATA)−1 A†

(A†)T I −AA†
]
.

Here A† is the pseudo-inverse of A.

2. Substitute the QR factorization of A in the expression for B−1 in part 1 and simplify as much as
possible.

3. Use the result of part 2 to formulate a method for computing the solution of an equation Bx = y
using the QR factorization of A. The right-hand side y and the variable x are (m + n)-vectors.
Give the complexity of each step in the method and the overall complexity. Include in the total all
terms that are cubic (m3, m2n, mn2, n3) and quadratic (m2, mn, n2) in the matrix dimensions.
If you know several methods, give the most efficient one.

Solution.

1. We multiply B with the proposed inverse and verify that the product is the identity matrix:[
0 AT

A I

] [
−(ATA)−1 A†

(A†)T I −AA†
]

=

[
AT (A†)T AT −ATAA†

−A(ATA)−1 + (A†)T AA† + I −AA†
]

=

[
I AT −ATA(ATA)−1AT

0 I

]
=

[
I 0
0 I

]
.

On line 2 we use the definition of A†. Since A† is a left inverse of A, we get AT (A†)T = (A†A)T = I
in the 1,1 block. For the 1, 2 and 2, 1 blocks we subsitute the definition of A† = (ATA)−1AT and
obtain

AT −ATAA† = AT −ATA(ATA)−1AT = AT −AT = 0,

and
−A(ATA)−1 + (A†)T = −(A†)T + (A†)T = 0.

2. The QR factorization is A = QR with QTQ = I and R an upper triangular matrix with positive
diagonal elements. We have

ATA = (QR)T (QR) = RTQTQR = RTR, (ATA)−1 = (RTR)−1 = R−1R−T ,

and
A† = (ATA)−1AT = R−1R−TRTQT = R−1QT .

Also, AA† = (QR)(R−1QT ) = QQT . The inverse therefore simplifies to

B−1 =

[
−R−1R−T R−1QT

QR−T I −QQT

]
.

3. If we multiply B−1 with the right-hand side we obtain[
x1
x2

]
=

[
−R−1R−T R−1QT

QR−T I −QQT

] [
y1
y2

]
=

[
R−1(−R−T y1 +QT y2)
y2 −Q(−R−T y1 +QT y2)

]
.

This can be computed as follows.
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• Compute u = R−T y1. We solve RTu = y1 by forward substitution. n2 flops.

• Compute v = QT y2. This is a product of an n×m matrix with an m-vector. 2mn flops.

• Compute w = v − u. n flops.

• Compute x1 = R−1w. We solve Rx1 = y1 by back substitution. n2 flops.

• Compute z = Qw. This is a product of an m× n matrix with an n-vector. 2mn flops.

• Compute x2 = y2 − z. m flops.

The total, including the cost of the QR factorization, is 2mn2 + 4mn+ 2n2.
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Problem 5. Suppose A is a nonsingular n× n matrix, and B and C are n×m matrices with m� n.
Describe an efficient method for solving the matrix equation

AXAT = BCT

using an LU factorization of A. The variable X is an n × n matrix. Give the complexity of each step
in your method and the total complexity. Include in the total complexity all terms that are cubic in m
and n (n3, n2m, nm2, m3) or higher order than cubic. If you know several methods, choose the most
efficient method when m� n.

Solution. The solution is
X = A−1BCTA−T = (A−1B)(A−1C)T .

We first compute Y = A−1B and W = A−1C, i.e., solve the matrix equations AY = B and AW = C.
This requires only one LU factorization of A. We then form the product X = YW T .

• LU factorization A = PLU . (2/3)n3 flops.

• Solving AY = B, column by column. The kth column of Y is yk = A−1bk = U−1L−1P T bk if bk is
the kth column of B. We compute yk in three steps, following the standard method.

– Compute uk = P T bk. This is a permutation of bk. 0 flops.

– Compute vk = L−1uk. We solve Lvk = uk by forward substitution. n2 flops.

– Compute yk = U−1vk. We solve Uyk = vk by back substitution. n2 flops.

The total for the m columns of Y is 2mn2 flops.

• Compute W = A−1C by the same method. 2mn2 flops.

• Compute the product X = YW T . This is a product of an n ×m matrix and an m × n matrix.
2n2m flops.

The total complexity is (2/3)n3 + 6n2m.
An alternative would be to first compute D = BCT , then solve AY = D, column by column, to com-

pute Y = A−1D, and then solving AXT = Y T , column by column, to compute X = Y A−1 = A−1DA−1.
This would require 2n forward and backward substitutions, in addition to the LU factorization and the
cost of the product BCT . The total is (2/3)n3 + 2mn2 + 4n3. When n � m this is less efficient than
the method described above because of the additional n3 term.
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