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Midterm solutions

Problem 1. The trace of a square matrix is the sum of its diagonal elements. What is the
complexity (number of flops for large n) of computing the following quantities?

1. The trace of AB, where A and B are n× n matrices.

2. The trace of C−1, where the n× n matrix C is lower triangular and nonsingular.

Solution.

1. 2n2 flops. The trace of AB is
∑n

i=1

∑n
j=1AijBji. This requires n2 multiplications and n2− 1

additions.

2. 2n flops. The diagonal elements of C−1 are 1/Cii. Computing the trace of C−1 requires n
divisions and n− 1 additions.

Problem 2. The node-arc incidence matrix of a directed graph with n nodes and m arcs is the
n×m matrix A with elements

Aij =


−1 if arc j leaves node i
1 if arc j enters node i
0 otherwise.

The figure shows the example from the lecture. (Note this is only an example.)
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A =


−1 −1 0 1 0

1 0 −1 0 0
0 0 1 −1 −1
0 1 0 0 1


Which of the following statements is correct? Choose one and explain your answer.

1. All node-arc incidence matrices are right invertible.

2. No node-arc incidence matrices are right invertible.

3. Some node-arc incidence matrices are right invertible, some are not. It depends on the graph.

Solution. The rows of a node-arc incidence matrix are linearly dependent. Each colum contains
one element equal to 1, one element equal to −1, and the other elements are zero, so the sum of the
rows are zero (1TA = 0). A node-arc incidence matrix is therefore never right invertible (lecture
4, page 26).

To see this directly, if a right inverse X existed, we would have the following contradiction. On
the one hand, 1TAX = 0 because 1TA = 0. On the other hand, 1TAX = 1T because AX = I.



Problem 3. Define a sequence of matrices Ak for k = 0, 1, 2 . . ., as follows: A0 = 1 and for k ≥ 1,

Ak =

[
Ak−1 Ak−1

−Ak−1 Ak−1

]
.

Therefore Ak is a matrix of size 2k × 2k. For k = 1, 2, 3 we have

A1 =

[
1 1
−1 1

]
, A2 =


1 1 1 1
−1 1 −1 1
−1 −1 1 1

1 −1 −1 1

 , A3 =



1 1 1 1 1 1 1 1
−1 1 −1 1 −1 1 −1 1
−1 −1 1 1 −1 −1 1 1

1 −1 −1 1 1 −1 −1 1
−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
−1 1 1 −1 1 −1 −1 1


.

Show that all matrices Ak in the sequence (not just the first four) are invertible. What is the
inverse of Ak?

Solution. The columns of Ak are mutually orthogonal and have norm
√
n where n = 2k:

AT
kAk = nI.

Therefore Ak is invertible with A−1
k = (1/n)AT

k .
This can be shown by induction. For k = 0, we have AT

0A0 = 1. Suppose AT
k−1Ak−1 = 2k−1I.

Then

AT
kAk =

[
Ak−1 Ak−1

−Ak−1 Ak−1

]T [
Ak−1 Ak−1

−Ak−1 Ak−1

]
=

[
2AT

k−1Ak−1 0
0 2AT

k−1Ak−1

]
=

[
2kI 0
0 2kI

]
.
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Problem 4. Let Q be an n× n orthogonal matrix, partitioned as

Q =
[
Q1 Q2

]
where Q1 has size n×m and Q2 has size n× (n−m), with 0 < m < n. Consider the n× n matrix

A = Q1Q
T
1 −Q2Q

T
2 .

1. Show that A can also be written in the following two forms:

A = 2Q1Q
T
1 − I, A = I − 2Q2Q

T
2 .

2. Show that A is orthogonal.

3. Describe an efficient method for solving Ax = b and give the complexity of the method (the
dominant term(s) in the flop count, including the coefficient). If you know several methods,
give the method that has the lowest complexity when m < n/2.

Solution.

1. Since Q is orthogonal we have QTQ = QQT = I. Expanding QQT = I gives

QQT =
[
Q1 Q2

] [
Q1 Q2

]T
= Q1Q

T
1 +Q2Q

T
2 = I.

Therefore
A = Q1Q

T
1 −Q2Q

T
2 = Q1Q

T
1 − (I −Q1Q

T
1 ) = 2Q1Q

T
1 − I

and
A = Q1Q

T
1 −Q2Q

T
2 = (I −Q2Q

T
2 )−Q2Q

T
2 = I − 2Q2Q

T
2 .

2. We have to verify that ATA = I, using any of the three expressions. For example, if we use
the third expression,

ATA = (I − 2Q2Q
T
2 )(I − 2Q2Q

T
2 )

= I − 2Q2Q
T
2 − 2Q2Q

T
2 + 4Q2Q

T
2Q2Q

T
2

= I − 2Q2Q
T
2 − 2Q2Q

T
2 + 4Q2Q

T
2

= I.

On line 3 we used the property that Q2 has orthonormal columns (QT
2Q2 = I).

3. Since A is orthogonal and symmetric, we have A−1 = AT = A and we can solve the equation
by making the product x = Ab, using one of the three expressions. If m < n −m the best
method is to use A = 2Q1Q

T
1 − I because this involves products with Q1 and its transpose.

The other expressions involve products with Q2 and its transpose, and since Q2 has more
columns than Q1, this will be more expensive.

We compute the matrix-vector product

x = (2Q1Q
T
1 − I)b = 2Q1(Q

T
1 b)− b

in three steps.
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• Compute the product y = QT
1 b. 2mn flops.

• Compute the product z = Q1y. 2mn flops.

• Compute the vector x = 2z − b. 2n flops.

The total is 4mn flops.
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Problem 5. Explain how you can solve the following problem using an LU factorization of A.
Given a nonsingular n × n matrix A and two n-vectors b and c, find an n-vector x and a scalar y
such that

Ax+ yb = c and ‖x‖2 = 1.

We assume that b 6= 0 and ‖A−1c‖ < 1. Clearly state every step in your algorithm. How many
solutions (x, y) are there?

Solution. We express x as x = A−1c− yA−1b and determine y by solving the equation

‖A−1c− yA−1b‖2 = 1.

Expanding the norm gives a quadratic equation in y:

‖A−1c‖2 − 2y(A−1c)T (A−1b) + y2‖A−1b‖2 = 1.

This quadratic equation has two roots because ‖A−1c‖ < 1 and ‖A−1b‖2 > 0.
The algorithm is as follows.

• Compute the LU factorization A = PLU .

• Compute u = A−1b using the standard method:

– Compute w = P T b.

– Solve Lz = w for z by forward substitution.

– Solve Uu = z for u by back substitution.

• Compute v = A−1c in the same manner.

• Compute the three scalars

α = ‖u‖2, β = −2uT v, γ = ‖v‖2 − 1,

find a root of the quadratic equation αy2 + βy + γ = 0, and take x = v − yu.
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