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Midterm solutions

Problem 1. The Kronecker product of two n× n matrices A and B is the n2 × n2 matrix

A⊗B =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
An1B An2B · · · AnnB

 .

For example, [
1 3
2 −1

]
⊗
[

3 4
−5 6

]
=


3 4 9 12
−5 6 −15 18

6 8 −3 −4
−10 12 5 −6

 .

Suppose the n × n matrices A and B, and an n2-vector x are given. Describe an efficient method for
the matrix-vector multiplication

y = (A⊗B)x =


A11B A12B · · · A1nB
A21B A22B · · · A2nB

...
...

...
An1B An2B · · · AnnB




x1
x2
...
xn

 .

(On the right we partitioned x in subvectors xi of size n.) What is the complexity of your method?
How much more efficient is it than a general matrix-vector multiplication of an n2 × n2 matrix and an
n2-vector?

Solution. We first compute the n matrix-vector products

z1 = Bx1, z2 = Bx2, . . . , zn = Bxn.

This takes n(2n2) = 2n3 flops. We then compute

y =

 y1
...
yn

 =

 A11z1 + A12z2 + · · ·+ A1nzn
...

An1z1 + An2z2 + · · ·+ Annzn

 ,

where we partitioned y in subvectors of size n. For each yk this involves n scalar-vector products Akizi
and n− 1 vector additions of size n. This takes 2n2 operations, so the total for y1, . . . , yn is 2n3. The
total flop count is 4n3, an order less than for for a general product of this dimension (2n4).

To derive the complexity, we can also note that[
y1 y2 · · · yn

]
= B

[
x1 x2 · · · xn

]
AT ,

so y can be computed using two matrix-matrix products of size n× n, i.e., in 4n3 flops.



Problem 2. Formulate the following problem as a set of linear equations in the form Ax = b. Give the
numerical values of the elements of the 4× 4 matrix A.

Find a polynomial p(t) = x1 + x2t + x3t
2 + x4t

3 that satisfies the four conditions∫ 1

0
p(t)dt = b1,

∫ 1

0
tp(t)dt = b2,

∫ 1

0
t2p(t)dt = b3,

∫ 1

0
t3p(t)dt = b4.

The numbers b1, b2, b3, b4 on the right-hand sides are given.

Solution. The equations are

x1

∫ 1

0
dt + x2

∫ 1

0
tdt + x3

∫ 1

0
t2dt + x4

∫ 1

0
t3dt = b1

x1

∫ 1

0
tdt + x2

∫ 1

0
t2dt + x3

∫ 1

0
t3dt + x4

∫ 1

0
t4dt = b2

x1

∫ 1

0
t2dt + x2

∫ 1

0
t3dt + x3

∫ 1

0
t4dt + x4

∫ 1

0
t5dt = b3

x1

∫ 1

0
t3dt + x2

∫ 1

0
t4dt + x3

∫ 1

0
t5dt + x4

∫ 1

0
t6dt = b4.

Evaluating the integrals, we obtain

x1 + x2/2 + x3/3 + x4/4 = b1

x1/2 + x2/3 + x3/4 + x4/5 = b2

x1/3 + x2/4 + x3/5 + x4/6 = b3

x1/4 + x2/5 + x3/6 + x4/7 = b4.

In matrix form, this is 
1 1/2 1/3 1/4

1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7




x1
x2
x3
x4

 =


b1
b2
b3
b4

 .
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Problem 3. Let a be an n-vector with ‖a‖ = 1. Define the 2n× 2n matrix

A =

[
aaT I − aaT

I − aaT aaT

]
.

1. Show that A is orthogonal.

2. The figure shows an example in two dimensions (n = 2). Indicate on the figure the 2-vectors x, y
that solve the 4× 4 equation [

aaT I − aaT

I − aaT aaT

] [
x
y

]
=

[
b
c

]
.

line through a and the origin

b

c

0

Solution.

1. We verify that ATA = I.

ATA =

[
aaT I − aaT

I − aaT aaT

] [
aaT I − aaT

I − aaT aaT

]
=

[
aaTaaT + I − 2aaT + aaTaaT 2(aaT − aaTaaT )

2(aaT − aaTaaT ) I − 2aaT + aaTaaT + aaTaaT

]
=

[
aaT + I − 2aaT + aaT 2(aaT − aaT )

2(aaT − aaT ) I − 2aaT + aaT + aaT

]
=

[
I 0
0 I

]
.

The simplifications on line 3 follow because aTa = 1.

2. Since A−1 = A, the solution is[
x
y

]
=

[
aaT I − aaT

I − aaT aaT

] [
b
c

]
=

[
aaT b + (I − aaT )c

(I − aaT )b + (aaT )c

]
The vectors aaT b and aaT c are the projections of b and c on the line through a on the origin. The
vectors (I − aaT )b and (I − aaT )c are the projections on the line orthogonal to a.
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line through a and the origin

b

cx

y
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Problem 4. Suppose A is an n×(n−1) matrix with linearly independent columns, and b is an n-vector
with AT b = 0 and ‖b‖ = 1.

1. Show that the matrix [ A b ] is nonsingular with inverse

[
A†

bT

]
.

2. Let C be any left inverse of A. Show that[
C(I − bbT )

bT

] [
A b

]
=

[
I 0
0 1

]
.

3. Use the results of parts 1 and 2 to show that C(I − bbT ) = A†.

Solution.

1. We verify that the product of [ A b ] and the proposed inverse is the identity matrix:[
A†

bT

] [
A b

]
=

[
A†A A†b
bTA bT b

]
=

[
I 0
0 1

]
.

We used A†A = I (by definition), bTA = 0 (by assumption), A†b = (ATA)−1AT b = 0 (by definition
of pseudo-inverse and AT b = 0), and bT b = 1 (by assumption).

2. We have [
C(I − bbT )

bT

] [
A b

]
=

[
CA− CbbTA C(b− bbT b)

bTA bT b

]
=

[
I 0
0 1

]
.

We used CA = I (by definition of left inverse), bTA = 0, and bT b = 1.

3. Parts 1 and 2 give two expressions for the inverse of [ A b ]. Since the inverse is unique we have[
A†

bT

]
=

[
C(I − bbT )

bT

]
.
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Problem 5. Suppose you have already computed the LU factorization A = PLU of a nonsingular
n× n matrix A. Describe an algorithm for each of the following problems and give its complexity.

1. Compute one particular column of A−1, i.e., compute (A−1)1:n,j for one particular index j.

2. Compute the sum of the columns of A−1, i.e., compute
∑n

j=1(A
−1)1:n,j .

3. Compute the sum of the rows of A−1, i.e., compute
∑n

i=1(A
−1)i,1:n.

Describe each step in your algorithm and give its complexity (number of flops as a function of n).
Include in the flop counts terms that are cubic, quadratic, and linear in n. If you know several methods,
give the most efficient one (of lowest order, if we exclude the cost of the LU factorization of A).

Solution.

1. To compute A−1ej we solve the equation Ax = PLUx = ej , using the standard method.

• y = P T ei. 0 flops.

• Solve Lz = y using forward substitution. n2 flops.

• Solve Ux = z using back substitution. n2 flops.

The total is 2n2 flops. Some improvements are possible by using the zero-one structure in the
right-hand side of Lz = y, but this does not change the order n2.

2. The sum of the columns is A−11. To compute this vector we solve Ax = PLUx = 1, using the
same method. We can skip step one because P T1 = 1.

• Solve Lz = 1 using forward substitution. n2 flops.

• Solve Ux = z using back substitution. n2 flops.

The total is 2n2 flops.

3. The sum of the rows is 1TA−1. To compute this vector we solve ATx = UTLTP Tx = 1 as follows.

• Solve UT y = 1 by forward substitution. n2 flops.

• Solve LT z = y by back substitution. n2 flops.

• x = Pz. 0 flops.

The total is 2n2 flops.
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