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1. (20 points) Consider the )(tg  shown below. Assume that 

( ) 0 when ,  2 .g t t T t T= > < − Compute the Fourier transform of )(tg . 

 

Solution to problem 1: 

g(t) can be decomposed into two triangle functions as shown below 

=

minus

-2T T

t

0

1

-2T 2T
t

0

1

T 2T
t

0

1

1/2

 

So )(tg  can be written as follows 

1
( ) tri tri

2 2

t t T
g t

T T

−   
= −   

   
, where tri(t/T) denotes a function with an isosceles triangle 

shape and having height 1 at its peak and width 2T at its base. 

Using Fourier transform pairs, 
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2
tri sinc ( )

t
T Tf

T

 
⇔ 

 
 (even if you didn’t explicitly know this transform pair, it is 

easy to derive since you know that a rect function transforms to a sinc function). Then, 

( ) ( )exp 2t T j Tfδ π− ⇔ −  

gives ( )2 21
( ) 2 sinc (2 ) sinc ( ) exp 2

2
G f T Tf T Tf j Tfπ= − −  

Alternative methods are possible to solve this problem, resulting in different but 

equivalent forms of the above solution.
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2 . (20 points) Consider a system in which a DSB-SC AM signal is generated by 

multiplying the message signal m(t) with a periodic rectangular waveform s(t) as shown 

in Fig. 1 and filtering the product with a unit gain band-pass filter (BPF) centered at 1 pT , 

where Tp is the period of the rectangular waveform. Also, the BPF has a bandwidth of 

2W, where W is the bandwidth of the message signal. You can assume that the bandwidth 

of the message signal is much smaller than 1 pT . 

 

 

Fig. 1: Block diagram of a DSB-SC modulator using rectangular waveform 

 

 

(a) (14 points) Find V(f), the Fourier transform of v(t), which is the signal before 

passage through the BPF. Your expression for V(f) can be expressed as a function 

of M(f), where M(f) is the Fourier transform of the input signal m(t). 

 

(b) (6 points) Give the correctly scaled time domain expression for u(t), expressed as 

a function of the input signal m(t).  
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Solution to problem 2: 

( )

( ) ( )

( )

( ) ( ) ( )

( ) ( ) ( )

(a) Since ( ) 2 rect * 1

2

1
2 sinc

2 2

sinc
2

Let ,

* sinc
2

p
p n

p p

np p

n p

p

t
s t t nT

T

T T n
S f f f f

T T

n n
f f

T

v t m t s t

n n
V f M f S f M f

T

δ

δ δ

δ δ

∞

=−∞

∞

=−∞

∞

=−∞

  
  

= − −  
    

   
⇒ = − −          

   
= − −         

=

 
⇒ = = − 

 

∑

∑

∑

( )
n

M f
∞

=−∞

 
−      

∑

 

 

( )

1
(b) The bandpass filter will cut off all frequencies except the ones centered at ,

that is for 1. Thus, the output spectrum is

1 1 1 1
sinc sinc

2 2

2 1

p

p p

p

T

n

U f M f M f
T T

M f
Tπ

= ±

      
= − + − +               


= −



( )

( ) ( )

2 1

4 1 1 1

2

Taking the inverse Fourier transform of the previous expression, we obtain

4 1
cos 2

which has the form of a DSB-SC AM s

p

p p

p

M f
T

M f f f
T T

u t m t t
T

π

δ δ
π

π
π

  
+ +     
  

    
= ∗ − + +            

 
=   

 

( )
4 1

ignal, with cos 2 .
p

c t t
T

π
π

 
=   

 
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3. (20 points) The Fourier transform M(f) of a message signal m(t) is given in Fig. 2. Note 

that in contrast with the usual case in which message signals are purely real which would 

lead to a Hermitian Fourier transform (where Hermitian means that the real part is even 

and the imaginary part is odd), in this case M(f) is purely real but not even, meaning the 

m(t) must be complex.  This message signal m(t) is modulated that results in a modulated 

signal xc (t), which has Fourier transform  Xc(f) as shown in Fig. 3. 

 

 

 

Fig. 2: The Fourier transform M(f) of the message signal m(t) 

 

 

 

Fig. 3: The Fourier transform Xc(f) of the modulated signal xc(t) 

 

 

Design a receiver that will successfully recover m(t) from xc(t). Your answer should 

be in the form of a block diagram. The receiver must only consist of blocks that 

multiply by appropriate (possibly scaled) sinusoids, summation blocks and low-pass 

filters. Your receiver can NOT include any complex functions; all functions used in 

the receiver must be purely real. In order to get full credit, you must explicitly state 

the attributes of any sinusoidal functions that you use, and the bandwidth and gain of 

any low-pass filters that you use. 
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Solution to problem 3: 

 

( )πcos 2 2t

( )π2cos 2 6t

 

This can be seen visually by looking at the Fourier transforms of ( ) ( )1 2 and v t v t , where 

( ) ( ) ( ) ( ) ( ) ( )1 2cos 2 2  and 2cos 2 6c cv t x t t v t x t tπ π= = . Once these two signals are 

summed and pass through the low-pass filter with the transfer function H(f) specified 

above, you will be able to reconstruct m(t).   
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4. (20 points) Consider a random process Y(t) defined by  

( ) ( )
0

t

Y t X dτ τ= ∫   

and ( )X t  is given by 

( ) ( ) ( )cos sinX t A t B tω ω= + , 

where ω is constant and A and B are Gaussian random variables with mean µ and 

variance σ
2
. 

 

 

(a) (10 points) What limitation on the random variables A and B would make X(t) 

wide sense stationary? 

 

(b) (10 points) For this part of the problem, let A and B be independent Gaussian 

random variables with zero mean and unit variance. Determine mean and the 

variance of Y(t) at kt t= .  

 

 

 

Note: Some potentially useful trigonometry identities. 
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Solution to problem 4: 

 

(a) For X(t) to be WSS, it must be stationary in the mean and in the autocorrelation. From 

( ) [ ] ( ) [ ] ( )cos sinE X t E A t E B tω ω= +   , 

If E[A] = E[B] = 0, then the mean will be 0 for all t, and thus X(t) will be stationary in 

the mean. 

The autocorrelation function expression is 

( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

[ ]

[ ]

( )( ) ( )( ) [ ] ( )( )

1 2 1 2

1 1 2 2

2

1 2 2 1

2

1 2 1 2

2 2

2 1 2 1 2 1

2

cos sin cos sin

cos( )cos( ) cos( )sin( )

cos( )sin( ) sin( )sin( )

1 1
cos cos sin

2 2

1

2

XR t t E X t X t

E A t B t A t B t

E A t t E AB t t

E AB t t E B t t

E A t t E B t t E AB t t

E A

ω ω ω ω

ω ω ω ω

ω ω ω ω

ω ω ω

, =   

 = + + 

 = + 

 + +  

   = − + − + +   

= ( ) [ ] ( )( )2

2 1 2 1cos sin  where B E AB t t t tωτ ω τ + + + = − 

 

In order for this result to depend only on τ, we must have E[AB] = 0. 

 

 

(b) Since A and B are independent Gaussian random variables with zero mean and unit 

variance, we know that E[A] = E[B] = E[AB]= 0 and E[A
2
]= E[B

2
]=1. 

( ) ( ) ( )

( ) ( )

( ) ( )

0

0

cos sin

sin cos

sin cos 1

k

k

t

k

t

k k

Y t A B d

t t
A B

t t
A B

ωτ ωτ τ

ω ω

ω ω

ω ω

ω ω

= +

 
= − 
 

−
= −

∫

 

( ) [ ]
( )

[ ]
( )sin cos 1

0
k k

k

t t
E Y t E A E B

ω ω

ω ω

−
= − =    
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( ) ( ) ( )

( ) ( )
[ ]

( ) ( )

( ) ( ) ( )( ) ( )( )

22

2 2

2 2

2 2

2 2

sin cos 1 sin cos 1
2

1 2
sin cos 2cos 1 1 cos

k k k

k k k k

k k k k

Var Y t E Y t E Y t

t t t t
E A E B E AB

t t t t

ω ω ω ω

ω ω ω ω

ω ω ω ω
ω ω

 = −       

− −   
   = + −      

   

= + − + = −

 

Thus, Y(tk) has zero mean and variance ( )( )2

2

2
1 cos

Y k
tσ ω

ω
= − . 
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5.  Consider a system like the one discussed in lecture containing a transmit filter such 

that the transmitted pulses have the form g(t), which is nonzero only in the interval 

( )0,T . Assume for this problem that the channel has infinite bandwidth, so that the only 

impairments arising from passage through the channel are due to the addition of noise. 

Normally we have assumed an additive white Gaussian noise model, in which the noise 

introduced in the channel has a flat power spectral density ( ) 2n oS f N= . In this 

problem, however, we consider a system in which the noise added is colored Gaussian 

noise nc(t), which is modeled by passing additive white Gaussian noise n(t) through the 

filter C(f) as shown in Figure 5. Thus, under this scenario the signal at the input to the 

matched filter H(f) is ( ) ( )cg t n t+ , assuming a “one-shot” transmission where we 

transmit a single pulse. The output of the matched filter is sampled at time T, yielding a 

signal y(T) which is the sum of contributions due to the signal and noise components 

respectively; i.e. ( ) ( ) ( )s ny T y T y T= + . 

 

 

H(f)

sample at T

y
s
(T) + y

n
(T)g(t)

C(f)n(t)

n
c
(t)

 
 

Fig. 5: Matched filter for colored Gaussian noise 

 

Design a filter H(f) which maximizes the SNR, which is the ratio of the signal power to 

the noise power, measured at the sampled matched filter output. Show the maximum 

value of SNR. 
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Solution to problem 5: 

 

When C(f) = 1 (white noise case), the noise power at the output of filter h(t) due to n(t) is 

( )
2

0

2
N

N
P H f df

∞

−∞
= ∫ . 

For C(f) ≠ 1, the noise power becomes 

( )
2

0 ( )
2cN

N
P C f H f df

∞

−∞
= ∫  

The signal power at the sampled matched filter output is still the same as the white noise 

case. 
2

2( ) ( ) j fT

S
P G f H f e dfπ

∞

−∞
= ∫  

Therefore, 

( )

2
2

2
0

( ) ( )

( )
2

c

j fT

S

N

G f H f e df
P

SNR
NP

C f H f df

π
∞

−∞

∞

−∞

= =
∫

∫
 

Next we will use the Schwartz inequality, just as we did for the white noise case. In the 

present case, however, notice that the denominator has a factor C(f) while the numerator 

has no such factor. Thus, we will introduce C(f)/C(f) into the numerator, which will make 

it possible to cancel the C(f) term in the denominator: 

( ) ( )

( )

2
2

2
2

2 2
0 0

2

22
2

2
0 0

( )
( ) ( )( ) ( )

( )

( ) ( )
2 2

( )
( ) ( )

( ) 2 ( )

( )
( )

2

j fT
j fT

j fT

C f
G f H f e dfG f H f e df

C f
SNR

N N
C f H f df C f H f df

G f
e df C f H f df

C f G f
df

N N C f
C f H f df

π
π

π

∞
∞

−∞
−∞

∞ ∞

−∞ −∞

∞ ∞

−∞ −∞ ∞

∞ −∞

−∞

= =

≤ =

∫∫

∫ ∫

∫ ∫
∫

∫

 

Equality (achieving maximum SNR) holds when 
*

2

* 2

2

( )
( ) ( )

( )

( )
( )

( )

j fT

j fT

G f
k e C f H f

C f

k G f e
H f

C f

π

π−

 
= 

 

=

 

where k is an arbitrary gain factor. 


