Midterm Exam - Solutions

1. A DSB-SC modulated signal, *u*(*t*), is demodulated by applying it to a coherent detector. Assume the carrier used at the transmitter is given by $c_{\text{Tx}}(t) = A_c \cos(2\pi f_c t)$, while the carrier used by the receiver has a frequency error Δf , i.e., $c_{\text{Rx}} = \cos(2\pi (f_c + \Delta f)t)$.

The cutoff frequency of the LPF is *W* Hz.

(a) (5 points) Evaluate the effect of the frequency error, *∆f* , in the demodulator's local carrier, i.e., write the expression of $y(t)$, the output of the low-pass filter, assuming that $\Delta f \ll f_c$ and $\Delta f \ll W$, where *W* is the bandwidth of the message signal, *m*(*t*).

Solution: The received signal is $r(t) = u(t) = A_c m(t) \cos(2\pi f_c t)$. Thus, $r(t)\cos(2\pi(f_c+\Delta f)t) = A_c m(t)m(t)\cos(2\pi f_c t)\cos(2\pi(f_c+\Delta f)t)$ = *Acm*(*t*) $\frac{2\pi}{2}$ (cos(2 $\pi\Delta f$ *t*) + cos(2 $\pi(2f_c + \Delta f)$ *t*)). The output signal is $y(t) = \frac{A_c m(t)}{2} \cos(2\pi \Delta f t) \star 2W \text{sinc}(2Wt)$, where $\mathcal{F}^{-1}[H(\frac{f}{2W})^2]$ $\frac{1}{2W}$)] = 2*W*sinc(2*W t*).

(b) (5 points) Write the expression of $Y(f)$ in terms of $M(f)$.

Solution: $Y(f) = \frac{A_c}{4}(M(f - \Delta f) + M(f + \Delta f)) \prod_{i=1}^f \frac{f}{2N_i}$ $\frac{f}{2W}$), for $|f| \leq W$.

(c) (5 points) Assume $m(t) = a_m \cos(2\pi f_m t)$. Illustrate your answer by writing the expression of $y(t)$ and sketching the demodulated signal. (Note that $f_m = W$.)

Solution: After the lowpass filter with bandwidth $W = f_m$ (not including $f_m + \Delta f$), $y(t) = \frac{A_c a_m}{4} \cos(2\pi (f_m - \Delta f)t)$ Drawing of $y(t)$ is given as:

Solution: After the lowpass filter with bandwidth $W = f_m$ (including $f_m + \Delta f$),

$$
y(t) = \frac{A_c a_m}{2} \cos(2\pi f_m t) \cos(2\pi \Delta f t).
$$

Drawing of $y(t)$ is given as:

(d) (5 points) Still assuming $m(t) = a_m \cos(2\pi f_m t)$, plot the amplitude spectrum of $y(t)$.

Solution: $M(f) = \frac{a_m}{2}(\delta(f - f_m) + \delta(f + f_m))$. When the frequency components of $f_m + \Delta f$ and $-f_m - \tilde{\Delta} f$ are not included, we obtain

$$
Y(f) = \frac{A_c a_m}{8} (\delta(f - \Delta f + f_m) + \delta(f + \Delta f - f_m)).
$$
\n
$$
\uparrow
$$
\n
$$
f = \frac{|Y(f)|}{8}
$$
\n
$$
-f_m + \Delta f \qquad f_m - \Delta f \qquad f
$$

Solution: $M(f) = \frac{a_m}{2}(\delta(f - f_m) + \delta(f + f_m))$. When the frequency components of *f*^{*m*} + *∆f* and −*f*^{*m*} − $\tilde{\Delta}f$ are included, we obtain

$$
Y(f) = \frac{A_c a_m}{8} (\delta(f - \Delta f + f_m) + \delta(f + \Delta f - f_m) + \delta(f + \Delta f + f_m) + \delta(-f - \Delta f - f_m)).
$$
\n
$$
\begin{bmatrix} |Y(f)| \\ \frac{A_c a_m}{8} - \delta(f - \Delta f - f_m) \\ -f_m - \Delta f - f_m + \Delta f - f_m - \Delta f - f_m + \Delta f \end{bmatrix}
$$

2. (20 points) The modulating signal that is input to an FM modulator is given by

 $m(t) = 10 \cos(16\pi t)$, for $t \ge 0$.

The output of the FM modulator is

$$
u(t) = 10 \cos \left(4000 \pi t + 2 \pi k_f \int_{-\infty}^t m(\tau) d\tau \right),
$$

where $k_f = 10$, see figure below.

If the output of the modulator, $u(t)$ is passed through an ideal BPF centered at f_c and with a bandwidth of 62 Hz, determine the power of the frequency components at the output of the filter. Please compute the percentage of the power of $u(t)$ that appears at the output of the BPF?

Solution: $\int_{-\infty}^{t} m(\tau) d\tau = \frac{10}{16\tau}$ $\frac{10}{16\pi}$ sin(16π*t*). We denote $\beta = 2\pi k_f \frac{10}{16\pi} = 10\frac{10}{8} = 12.5$, $f_c = 2000$ [Hz], $A_c = 10$ [V] and $f_m = 8$ [Hz]. Thus, $u(t) = A_c \cos(2\pi f_c t + \beta \sin(2\pi f_m t))$. Then, $u(t)$ can be expressed as:

$$
u(t) = \sum_{n=-\infty}^{\infty} A_c J_n(\beta) \cos(2\pi (f_c + nf_m)t).
$$

The power of the frequency components at the output of the filter is

$$
\frac{A_c^2}{2} \sum_{n=-3}^{3} J_n^2(\beta) = 8.35 \text{ [Watts]},
$$

or 3.5 [Watts] (if only use fist decimal digit). The total power of $u(t)$ is $\frac{A_c^2}{2} = 50$ [Watts]. As a result, the percentage of the power of $u(t)$ that appears at the output of the BPF is given as:

$$
\sum_{n=-3}^{3} J_n(\beta)^2 = J_0(\beta)^2 + 2 \times \sum_{n=1}^{3} J_n(\beta)^2 = 0.1607 = 16.7\%,
$$

or 7% (if only use first decimal digit and truncate the second decimal digit).

3. A message signal, *m*(*t*), such that −2 ≤ *m*(*t*) ≤ 2 volts has power spectral density given by

The white Gaussian noise on the channel has a power spectral density $\frac{N_0}{2}$, where $N_0=1\times 10^{-6}\frac{\text{W}}{\text{Hz}}.$

(a) (5 points) Assuming that the message modulates a carrier of amplitude $A_c = 1$ V in a DSB-SC scheme, what is the signal-to-noise ratio at the output of the coherent demodulator? (Assume that the receiver is perfectly synchronized to the transmitter.)

Solution: The output $y(t) = \frac{1}{2}A_c m(t) + \frac{n_c(t)}{2}$ $\frac{P_c(t)}{P_a}$. The signal power is $P_{o,s} = \frac{A_c^2}{4} P_M = 0.25 \times 10^{-10}$ 0.4 = 0.1 [watts]. The noise power is $P_{o,n} = \frac{1}{4}$ $\frac{1}{4}$ 2 N_0 W = 0.25 × 2 × 10⁻⁶ × 100 = 5 × 10⁻⁵ [watts]. Thus, the corresponding SNR is $\frac{0.1}{5 \times 10^{-5}} = 2000$.

(b) (5 points) If $m(t)$ modulates the same carrier in a conventional AM scheme with a modulation index $= 0.9$, what is the signal-to-noise ratio at the output of the envelope detector, after the DC has been removed? (Can you make the assumption that the received signal-to-noise ratio is high?)

Solution: After removing the DC component, we obtain the output of the envelope detector is $y(t) = A_c a m_n(t) + n_c(t)$. Since $|m(t)| \le 2$, then $m_n(t) = \frac{m(t)}{2}$. The power content of $m_n(t)$ is $P_{m_n} = \frac{P_m}{4} = 0.1$ [Watts]. The signal power is $P_{o,s} = A_c^2$ c^2 *a*² P_{M_n} [Watts]. The noise power is $P_{o,n} = 2WN_0$ [watts]. Since modulation index is $a = 0.9$, the corresponding SNR = $\frac{A_c^2 a^2 P_{M_n}}{2 W N_0}$ $\frac{2}{2} \alpha^2 P_{M_n}}{2W N_0} = \frac{0.9^2 \times \frac{P_M}{4}}{2 \times 10^{-4}} = 405$. Thus, we can assume that the received signal-to-noise ratio is high.

(c) (5 points) Still assuming a conventional AM scheme with a modulation index $= 0.90$, what is the signal-to-noise ratio at the output of the coherent detector, after the DC has been removed?

Solution:
$$
y(t) = \frac{A_c a m_n(t)}{2} + \frac{n_c(t)}{2}
$$
. The output SNR = $\frac{\frac{1}{4}A_c^2 a^2 P_{M_n}}{\frac{1}{4}2 W N_0} = \frac{0.9^2 \times 0.1}{2 \times 10^{-4}} = 405$.

(d) (5 points) Which of the two modulation schemes, DSB-SC or conventional AM, guarantees a higher signal-to-noise ratio at the output of the corresponding demodulator?

Solution: We observe that DSB-SC AM can guarantee a higher signal-to-noise ratio at the output of the corresponding demodulator.