Spring 2016 Midterm Wednesday, April 27, 2016

EE 132A Introduction to Communication Systems Instructor: Lara Dolecek

Maximum score is 100 points. You have 110 minutes to complete the exam. Please show your work.

Good luck!

Your Name: Kai-Zhou Yavig

Your ID Number: 354843286

Name of person on your left: MA

Name of person on your right: Might: Might!

Excellent !!.

Problem	Score	Possible
1	20	20
2	20	20
3	20	20
4	20	20
5	17	20
Total	air	100
	17	

1. (20 pts) Let X and Y be independent continuous random variables, with X uniform on [0,1] and Y uniform on [0,2]. Let Z(t) be a random process defined as

$$Z(t) = X \cos 2\pi f t + Y \sin 2\pi f t.$$

- (a) Compute mean and autocorrelation of Z(t).
- (b) Is Z(t) strict sense stationary? Provide an argument.
- (c) Is Z(t) wide sense stationary? Provide an argument.

 $R(t_1,t_2) = E[2(t_1) 2(t_2)] = E[X^2] \cos 2\pi f t_1 (652\pi f t_2 + E(XY)) \cos 2\pi f t_1 \sin 2\pi f t_2$ $+ E[XY] \sin 2\pi f t_2 + E[Y^2] \sin 2\pi f t_3 + E[Y^2] \sin 2\pi f t_4$

- b) No. I+ isn + com W.s.s.
- 1) No. p(t) \$ 14 ER

- 2. (20 pts) Suppose a strict sense stationary random process X(t) has power spectral density $S_X(f)$.
 - (a) What is the power spectral density of the random process Y(t) given by Y(t) = X(t) X(t-T), where T is an arbitrary positive constant.
 - (b) Is the process Y(t) wide-sense stationary? Justify your answer.

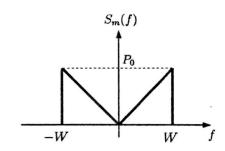
a)
$$R_{y}(\tau) = E[(x | t + \tau) + x | t + \tau - \tau)(x | t - \tau)]$$

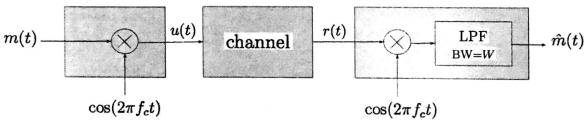
$$= E[x | t + \tau)x | t + \tau] - E[x | t + \tau)x | t - \tau] - E[x | t + \tau - \tau)x | t + \tau] + E[x | t + \tau - \tau)x | t - \tau]$$

$$= R_{x}(\tau) - R_{x}(\tau + \tau) - R_{x}(\tau - \tau) + R_{x}(\tau) = 2R_{x}(\tau) - R_{x}(\tau + \tau) - R_{x}(\tau - \tau)$$

$$= \sum_{x = \tau} S_{x}(t) - \left(e^{t}\right)^{2\pi t} S_{x}(t) + e^{-t} S_{x}(t) + e^{-t} S_{x}(t)$$

$$= \sum_{x = \tau} S_{x}(t) - 2S_{x}(t) \cos 2\pi t T$$


$$= \sum_{x = \tau} S_{x}(t) - 2S_{x}(t) \cos 2\pi t T$$


$$= \sum_{x = \tau} S_{x}(t) - 2S_{x}(t) \cos 2\pi t T$$

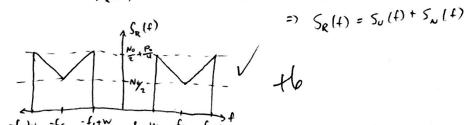
$$= \sum_{x = \tau} S_{x}(t) - 2S_{x}(t) \cos 2\pi t T$$

b)
$$//y(4) = E[X(4) - X(4-7)] = E[X(4-7)] = E[X(4-7)] = 2 / x$$

- 3. (20 pts) Baseband signal m(t) has the power spectral density as shown in figure 1(a). Signal m(t) passes through a DSB amplitude modulator. The signal at the out put of the modulator is named as u(t). Then, u(t) is fed to a channel with additive noise that has a power spectral density $N_0/2$ within the passband of the signal. Name the output of the channel as r(t). Signal r(t) passes through a demodulator followed by an ideal low-pass filter with bandwidth W and signal $\hat{m}(t)$ is recovered at the output of LPF.
 - (a) Sketch the power spectral density of signals u(t), r(t), and $\hat{m}(t)$.

$$u(4) = \frac{1}{2} S_m(4) = \frac{1}{2} S_m(4) = \frac{1}{2} S_m(4) = \frac{1}{2} S_m(4) + \frac{1}{2} S_m(4)$$

$$= \frac{1}{100} - \frac{1}{100} = \frac{1}{100} \left[\frac{1}{100} \left(\frac{1}{100} + \frac{1}{100} \right) + \frac{1}{100} \left(\frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right) \right] \frac{1}{100}$$


$$= \frac{1}{100} \left[\frac{1}{100} \left(\frac{1}{100} + \frac{1}{100} + \frac{1}{100} \right) + \frac{1}{100} \left(\frac{1}{100} + \frac{1}{10$$

Extra work space.

=)
$$R_R(47) = E[(v(t+1)+v(t+1))(v(t)+v(t))]$$

= $R_v(t, \tau) + R_v(\tau) + R_{v,v}(\tau) + R_{v,v}(-\tau)$

A Realistically, U & N are independent > therefore uncorrelated

=)
$$R_{e}(+,\tau) = R_{v}(+,\tau) + R_{N}(\tau) \Rightarrow \overline{R_{e}(\tau)} = \overline{R_{v}(\tau)} + R_{N}(\tau)$$

* Similarly, M& No are uncorrelated & No is O mean

4. (20 pts) Let $x(t) = A\sin(2\pi f t + \theta)$. Sketch the frequency representation of x(t) and the frequency representation of its in-phase and quadrature components, $x_c(t)$ and $x_s(t)$.

$$x(t) = A \cos(2\pi t t - \frac{\pi}{2} + \theta) = \underbrace{A}_{=} \left[e^{j(-\frac{\pi}{2} + \theta)} e^{j2\pi t \cdot t} + e^{j(\frac{\pi}{2} - \theta)} e^{j2\pi t \cdot t} \right]$$

$$= \underbrace{A}_{=} \left[-je^{j\theta} e^{j2\pi t \cdot t} + je^{j\theta} e^{-j2\pi t \cdot t} \right]$$

$$= \chi(\hat{f}) = \frac{A}{Z} \left[-j e^{j\theta} S(\hat{f} - f) + j e^{-j\theta} S(\hat{f} + f) \right]$$

$$= \chi(\hat{f}) = \frac{A}{Z} \left[-j e^{j\theta} S(\hat{f} - f) + j e^{-j\theta} S(\hat{f} + f) \right]$$

$$= \chi(\hat{f}) = \frac{A}{Z} \left[-j e^{j\theta} S(\hat{f} - f) + j e^{-j\theta} S(\hat{f} + f) \right]$$

$$= \chi(\hat{f}) = \frac{A}{Z} \left[-j e^{j\theta} S(\hat{f} - f) + j e^{-j\theta} S(\hat{f} + f) \right]$$

$$= \frac{\chi(\hat{f}) = \frac{\pi}{2} \left[-je^{x} S(\hat{f} - \hat{f}) + je^{x} S(\hat{f} + \hat{f}) \right]}{A/2}$$

$$= \frac{1}{2} \frac{\chi(\hat{f})}{A/2}$$

$$= \frac{1}{2} \frac{1}{4} \frac{\chi(\hat{f})}{A/2}$$

=)
$$\chi(t) = \text{Re}\left\{Ae^{\int 10\pi tt - \frac{\pi}{2} + \Theta}\right\} \Rightarrow_{\mathcal{U}} = Ae^{\int \frac{\pi}{2} + \Theta} e^{\int 2\pi t + \frac{\pi}{2}} = \chi_{\mathcal{U}}(t) e^{\int \frac{\pi}{2} + \frac{\pi}{2} + \frac{\pi}{2}}$$

$$\Rightarrow \chi_{1}(t) = A e^{j(-\frac{\pi}{2}+\theta)} = \chi_{1}(t) + j\chi_{2}(t) \Rightarrow \begin{cases} \chi_{1}(t) = A \cos(-\frac{\pi}{2}+\theta) = A \sin\theta \\ \chi_{2}(t) = A \sin(-\frac{\pi}{2}+\theta) = -A \cos\theta \end{cases}$$

$$= \chi_{\epsilon}(f) = A \sin \theta \delta(f)$$

$$\chi_{\delta}(f) = -A_{\epsilon} \cos \theta \delta(f)$$

	\mathcal{W}
` -	pts) True or False.
	cling the correct answer is worth $+2$ points, circling an incorrect answer worth -1 points. Not circling either is worth 0 points.
V (a)	Power spectral density is the Fourier transform of the squared mean of the given random process. TRUE FALSE
(b)	If $X(t)$ is a Gaussian random process, then it is completely specified by its mean and autocorrelation functions. FALSE
1	
V (c)	For two WSS random processes $X(t)$ and $Y(t)$, $R_{X,Y}(\tau) = R_{X,Y}(-\tau)$. TRUE FALSE
/ ^(d)	Consider an LTI system described in time by a delta function. Then, power spectral density of the output is half the power spectral density of the input. TRUE FALSE
k (e)	Auto correlation of a random process $X(t)$ can be negative. TRUE FALSE
\int (f)	Hilbert transform of $\delta(t)$ is π . TRUE FALSE
(g)	For a bandpass signal $x(t)$ of bandwidth W and centered at frequency f_0 , its lowpass representation $x_{\ell}(t)$ does not have any frequencies larger than $f_0 + W/2$. TRUE FALSE
(h)	If X, Y , and Z are jointly Gaussian random variables, then each of X, Y , and Z is a Gaussian with mean 0. TRUE FALSE
$\sqrt{(i)}$) Two random processes that are independent and each is WSS, are jointly WSS. FALSE
$\int \int $) DSB-SC AM requires half the bandwidth of SSB-SC AM. TRUE FALSE