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Solutions to Practice Problem Set # 2

Problem 1

(Autocorrelation and PSD)

(a) The power spectral density of X, SX(f), is the Fourier transform of the autocorrelation,
RX(τ). The function RX(τ) = e−2|τ | breaks down into e−2|τ | = e−2τu(τ)+e2τu(−τ). The
Fourier transform is thus:

SX(f) =

∫ ∞
−∞

RX(τ)e−j2πfτdτ

=

∫ ∞
−∞

e−2|τ |e−j2πfτdτ

=

∫ ∞
0

e−2τe−j2πfτdτ +

∫ 0

−∞
e2τe−j2πfτdτ

=
1

2 + j2πf
+

1

2− j2πf
=

4

4 + 4π2f2
=

1

1 + π2f2

where the solutions to the integrals were given in the instructions as:∫ ∞
0

e−ate−j2πftdt =
1

a+ j2πf∫ 0

−∞
eate−j2πftdt =

1

a− j2πf

It is important to simplify the expression into the final form and not leave it in the form
containing imaginary numbers. The Fourier transform of a real, even function is also
always a real, even function. Therefore, since the autocorrelation function was real and is
always even (Rx(τ) = Rx(−τ)), the PSD should also be real and even, as seen from the
final expression.

(b) By the same method as section (a), we obtain

SN (f) =
6

9 + 4π2f2

(c) For the autocorrelation of Y (t), we simplify the following:

RY (τ) = E[Y (t)Y (t+ τ)]

= E[(X(t) +N(t))(X(t+ τ) +N(t+ τ))]
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= E[X(t)X(t+ τ) +X(t)N(t+ τ) +N(t)X(t+ τ) +N(t)N(t+ τ)]

= E[X(t)X(t+ τ)] + E[X(t)N(t+ τ)] + E[N(t)X(t+ τ)] + E[N(t)N(t+ τ)]

= E[X(t)X(t+ τ)] + E[X(t)]E[N(t+ τ)] + E[N(t)]E[X(t+ τ)] + E[N(t)N(t+ τ)]

(by independence of X and N)

= E[X(t)X(t+ τ)] + E[N(t)N(t+ τ)]

(because X and N are zero-mean)

= RX(τ) +RN (τ) = e−2|τ | + e−3|τ |

The independence and zero-mean properties should be specified. Independence makes
the expectation of the products equal to the product of the expectations, ie. E[A · B] =
E[A]E[B]. Because X and N also have zero mean, this means E[X(t)] = E[N(t)] = 0,
which cancels out the cross-terms in the multiplication, leaving just the autocorrelation
of X plus the autocorrelation of N .

(d) Again, the power spectral density is the Fourier transform of the autocorrelation. By
linearity of the Fourier transform,

SY (f) = F{RY (τ)}
= F{RX(τ) +RN (τ)}
= F{RX(τ)}+ F{RN (τ)}
= SX(f) + SN (f)

=
4

4 + 4π2f2
+

6

9 + 4π2f2

Problem 2

(Short questions)

(a) The total probability of error will not change. When the decision rule does not change, the
conditional error probabilities P (E|H0) and P (E|H1) do not change. The total probability
of error

Pe = p0P (E|H0) + (1− p0)P (E|H1) = (p0 + 1− p0)P (E|H0) = P (E|H0) = P (E|H1)

(b) No. This is because the error probability is only determined by the distance between the
two points:

d = ‖ψ0(t)− ψ1(t)‖
=
√
‖ψ0(t)‖2 + ‖ψ1(t)‖2

which is independent of the waveforms. Instead, it only depends on their energies.

(c) No. The Viterbi decoder finds the path (X1, . . . , XN ) that maximizes

P (X|Y ) = P (Xi|Y )P ({Xj}j 6=i|Y,Xi)

However, it does not necessarily maximizes the individual P (Xi|Y ).

(d) No. For the actual channel that has L = 1, we only need to have a cyclic prefix that is at
least 1. It also works with a cyclic prefix that is longer than that, say for example 2.
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Problem 3

(Short questions)

(a) No. This constellation is not centered around origin. Let v =

√E
2√
E
2

. Then the one

that has the lowest power for the same probability of error is given by s̃0 = s0 − v and
s̃1 = s1 − v.

(b) Yes. If s0(t) and s1(t) are linearly dependent, then the dimension of the space spanned by
s0(t) and s1(t) is one. The orthonormal basis for {s0(t), s1(t)} is either φ(t) = s0(t)/‖s0(t)‖
or φ(t) = s1(t)/‖s1(t)‖. Since

∫
R(t)φ(t)dt is the sufficient statistics, either

∫
R(t)s0(t)dt

or
∫
R(t)s1(t)dt is also the sufficient statistics because s0(t) and s1(t) are just scaled

versions of φ(t). On the other hand, if s0(t) and s1(t) are linearly independent, then the
dimension of the space spanned by s0(t) and s1(t) is two. Let φ1(t) and φ2(t) be the
orthonormal basis functions of {s0(t), s1(t)} so that

s0(t) = s01φ1(t) + s02φ2(t)

s1(t) = s11φ1(t) + s12φ2(t)

The vector representations s0 =

[
s01
s02

]
and s1 =

[
s11
s12

]
are linearly indepdendent as well,

which means we can solve
∫
R(t)φ1(t)dt and

∫
R(t)φ2(t)dt uniquely from the following

equations: ∫
R(t)s0(t)dt = s01

∫
R(t)φ1(t)dt+ s02

∫
R(t)φ2(t)dt∫

R(t)s1(t)dt = s11

∫
R(t)φ1(t)dt+ s12

∫
R(t)φ2(t)dt

Thus,
∫
R(t)s0(t)dt and

∫
R(t)s1(t)dt are the sufficient statistics.

Problem 4

(Minimum-Energy Signals)

(a) This part should be sufficiently self-explanatory. The average energy of a constellation
with M signal points with probabilities PH(i), i ∈ [0,M − 1] is given as E = E[STS] =∑M−1

i=0 PH(i)‖si‖2, where si is the signal point vector corresponding to index i and S is
the random vector corresponding to the transmitted signal point (when one dimensional,
becomes a random variable).

(b) The average error probability doesn’t depend on the value of a because the characteriza-
tion of MAP or ML regions only depends upon the geometry of the constellation regardless
of the translation in case the channel under consideration is an additive noise channel.
This can be seen intuitively by the fact that, if the transmitted vector is si + a, the
additive zero mean noise vector gets mean-shifted to si + a. The error event, given this
translated point is transmitted, only depends upon the values that the noise vector can
take i.e. the distance from the transmitted point to the hyperplanes dissecting the MAP
or ML regions, which are also translated by the same amount a. Hence while computing
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the distance between the translated point si+a and the shifted hyperplane or neighbour-
ing points, the components of a cancel correspondingly in the distance formula reducing
the problem to the original case without any translation.

(c) From part (a), it is noticed that the average energy E changes with the amount of trans-
lation because it depends upon the location of each signal point in the constellation. Now,
the required proof is as follows. If X is a random variable with zero mean, the variance
of X, which roughly characterizes its energy, is written as E[X2]. Now, for a constant b,

E[(X − b)2] =E[X2] + b2 − 2bE[X]

=E[X2] + b2

≥E[X2] (1)

The last equation is valid because b2 is a positive constant.

Let us consider our signal constellation vector to be S wherein the transmitter transmits
one of the M points S = Si with probability pi. The average energy is the expected value
of the norm square of each constellation point. Now let X = S−E[S] (in other words, X is
the random vector corresponding to a translation of the original constellation wherein the
translation takes the away any non-zero value of the centroid; not the geometric centroid,
but the mean of the original constellation) and the average energy of this “centered”
constellation is (vectors represented normally as column vector and their transposes are
row vectors),

E[XTX] =E[(S − E[S])T (S − E[S])]

=E[STS]− E[S]TE[S]

≤E[STS] (2)

Since we see from the above inequality that the random vector X has the least average
energy among all translated constellations, the above constitutes a proof that a constella-
tion with its centroid (mean) at the origin has the least energy of all possible translations.
When the prior probabilities are equal, the mean is indeed the geometric centroid too.

Problem 5

(Antipodal Signaling)

(a) Assume for instance that PH(0) = PH(1) = 1
2 . Then, the decision regions are:

R0 = {(y1, y2) : y2 < −y1},
R1 = {(y1, y2) : y2 ≥ −y1}.

If now, for instance, Y1 = a, then for values of Y2 that are larger than −a, we decide
Ĥ = 1, whereas for values of Y2 that are smaller than −a, we decide Ĥ = 0. Hence, we
still need Y2, and the knowledge of Y1 is not sufficient.

(b) A new constellation for which Y1 is a sufficient statistic is for instance

s̃0 = (−a, 0),

s̃1 = (a, 0).
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Problem 6

(Rectangular Waveforms)

(a) Plot out the curve of s1(t), . . . , s4(t), we can show that:

s1(t) = 1 · φ1(t) + 1 · φ2(t)− 1 · φ3(t)
s2(t) = −1 · φ1(t) + 1 · φ2(t) + 1 · φ3(t)
s3(t) = 1 · φ1(t)− 1 · φ2(t) + 1 · φ3(t)
s4(t) = −1 · φ1(t)− 1 · φ2(t) + 0 · φ3(t)

Thus the vector representations for them are:

s1 = [+1 + 1 − 1]T

s2 = [−1 + 1 + 1]T

s3 = [+1 − 1 + 1]T

s4 = [−1 − 1 0]T

(b) We can compute the energy for each signal from its vector representation:

E1 = 3

E2 = 3

E3 = 3

E4 = 2

Then, the average energy is

Eavg =
3 + 3 + 3 + 2

4
=

11

4

(c) The result of distances dij between the signals is shown in Table 1.

s1 s2 s3 s4
s1 0 2

√
2 2

√
2 3

s2 2
√

2 0 2
√

2
√

5

s3 2
√

2 2
√

2 0
√

5

s4 3
√

5
√

5 0

Table 1: Distances between the signals.

(d) The minimum distance dmin =
√

5. The union bound is given by

Pe ≤ 3Q

(
dmin√
2N0

)
= 3Q

(√
5

2N0

)
= 3Q

(√
10

11
· Eavg

N0

)
= 3Q

(√
20

11
· Eb
N0

)

For this part, you only need to have a correct expression inside the Q-function.

(e) The sketch is shown in Fig. 1.
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Compute the 
distance 

between x 
and s1, s2, 
s3, and s4

Figure 1: Sketch of the low complexity maximum likelihood receiver.

Problem 7

(Synchronization Importance)

(a) For the signal part we have sn =
∫
x(t)ψ(t − nT )dt = Ebn, where E =

∫
ψ(t)2dt is the

energy of the pulse ψ. For the noise part we note that the noise at the output of the
matched filter at time nT is zn =

∫
z(t)ψ(t−nT )dt, where z(t) is the additive noise of the

channel. As {ψ(t − kT ), k ∈ Z} is an orthogonal collection, the zn are i.i.d. Gaussian
random variables with variance N0

2 E .

(b) We have rn = bn + zn. Hence, deciding on bn ∈ {+1,−1} is a binary hypothesis testing
problem. Some further calculations show that the optimal decision rule is

rn

+1
>
<
−1

0,

and the error probability is Pe = Q(
√

2E
N0

).

(c) The output of the matched filter corresponding to the signal part is y(t) =
∑
biφ(t− iT )

where φ(t) = ψ(t) ? ψ(t) is a triangular pulse with peak E and width 2T centered around
0. At sampling time tn = nT − τ we obtain

yn =
∑

biφ((n− i)T − τ)

= E((1− τ

T
)bn +

τ

T
bn−1).

Hence, α = E(1− τ
T ), β = E τT .
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(d) The decision rule compares the received value rn = yn + zn with 0 and decides that the
value of bn is +1 or −1. Assuming that bn = +1 then rn = E(1− τ

T ) + E τT bn−1 + zn. By
conditioning on bn we have

Pr{E} =
1

2
Pr{rn < 0|bn−1 = +1}+

1

2
Pr{rn < 0|bn−1 = −1}

=
1

2
Pr{E + zn < 0}+

1

2
Pr{E(1− 2τ

T
) + zn < 0}

=
1

2
{Q(

√
2E
N0

) +Q(

√
2E(1− 2τ

T )

N0
)}.

Problem 8

(More on matched filters. . . )

(a) The impulse response of the matched filter smf (t) = s(T − t) is given by

smf (t) =

{
A
T (T − t) cos(2πfc(T − t)) 0 ≤ t ≤ T,
0 else.

(3)

(b) The output of the matched filter, y(t) |t=T , is the result of convolution (at time t = T )
between the input signal s(t) and the matched filter response smf (t) which is given by the
following set of equations:

y(t) =smf (t) ∗ s(t) (4)

=

∫ ∞
0

(
A

T

)2

(T − τ) cos(2πfc(T − τ)) · (t− τ) cos(2πfc(t− τ)) dτ

=⇒ y(T ) =

∫ t

0

(
A

T

)2

(T − τ) cos(2πfc(T − τ)) · (t− τ) cos(2πfc(t− τ)) dτ

∣∣∣∣∣
t=T

=

∫ T

0

(
A

T

)2

(T − τ) cos(2πfc(T − τ)) · (T − τ) cos(2πfc(T − τ)) dτ. (5)

Simplifying and making change of variables as T − τ = t, the above equation can be
re-written as

y(T ) =

∫ T

0

(
A

T

)2

t2 cos2(2πfct) dt. (6)

(c) The correlator output is exactly the same as (6) which can be directly obtained from the
definition of a correlator.

Problem 9

(Linear Block Coding)

(a) The parity check matrix is cHT = 0, where 0 is a vector of size n− k containing all zeros.
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(b) This can be solved by enumerating all the combinations of missing values in column 2
and column 3 that satisfy cHT = 0. By analyzing the nonzero elements of the received
codeword, it is only the modulo-2 sum of rows two, three, six, and seven of HT that
contribute to producing the all-zero syndrome ensuring c is a valid codeword. Since there
are four missing elements, there are sixteen possible ways to fill these elements with ones
and zeros. However, only four of these sixteen cases will produce cHT = 0 given the valid
codeword in the problem statement. These four are:

[A,B,C,D] = [1, 0, 1, 0]

= [0, 1, 0, 1]

= [0, 1, 1, 0]

= [1, 0, 0, 1]

(c) Starting with the four possibilities found in part (b), we want to find which of these has
the maximum dmin. Since the distances separating codewords do not depend on which
codeword is used as the reference, for convenience it is easiest to use the all-zero codeword
as a reference. For a given code, dmin will be the number of ones in the codeword which
has the fewest number of ones. From H, construct the generator matrix, G, as:

G =

1 0 0 1 0 1 1

0 1 0 1 1 A C

0 0 1 1 1 B D


From this we can see that there are two sets of values that ensure that all rows of G have
a Hamming weight of at least 4:

[A,B,C,D] = [0, 1, 1, 0]

= [1, 0, 0, 1]

Problem 10

(Convolutional Coding)

(a) The block diagram is seen below:

(b) The state diagram for the encoder with rate 1/3 is shown below:
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According to the trellis diagram shown below, the decoded input sequence is [1 1 0 0 0].

Problem 11

(Convolutional Code)

(a) An implementation of the encoder is shown in Fig. 2:

(b) The rate of this code is 2/3: Two inputs produce three outputs.

(c) The state diagram is very similar to the one considered in class. The difference is that
now, every state is accessible from every other state. We use the following terminology:
the state label is a, b, where a is the “state of the even sub-sequence”, i.e. contains d2n−2,
and b is the “state of the odd sub-sequence”, i.e. contains d2n−1. On the arrows, we only
mark the outputs; the input required to make a particular transition is simply the next
state, therefore we omitted it. Take for example the arrow linking state 1, 1 to state −1, 1.
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D

D

d2n

d2n+1 d2n−1

d2n−2

x3n+2

x3n

x3n+1

Figure 2: Implementation of the encoder

It is clear that the inputs have to be d2n = −1 and d2n+1 = 1. The corresponding output
in order x3n, x3n+1, x3n+2 are marked on the branch: −1, 1− 1. We only give a few of the
labels in the figure below; it should be easy to find the rest.

−1, 1 1,−1

1, 1

−1,−1

−1, 1,−1
−1,−1,−1

1, 1, 1

−1, 1,−1

−1,−1, 1

1,−1, 1

1,−1,−1
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Problem 12

(“Real” convolutional decoding)

(a) The possible values of yt are −3
2 , −1

2 , 1
2 and 3

2 .

(b) We plot the state diagram below. Then, we can conclude that the input sequence is
(+1, +1, +1).

!1# 1#

+1#|#0.5#

!1#|#!0.5#

!1#|#!1.5# +1#|#1.5#

(c) The 8 possible output sequences are:

(s0, s1, s2) (y0, y1, y2, y3)

(−1,−1,−1) (−1.5,−1.5,−1.5,−1.5)

(−1,−1,+1) (−1.5,−1.5,+0.5,−0.5)

(−1,+1,−1) (−1.5,+0.5,−0.5,−1.5)

(−1,+1,+1) (−1.5,+0.5,+1.5,−0.5)

(+1,−1,−1) (+0.5,−0.5,−1.5,−1.5)

(+1,−1,+1) (+0.5,−0.5,+0.5,−0.5)

(+1,+1,−1) (+0.5,+1.5,−0.5,−1.5)

(+1,+1,+1) (+0.5,+1.5,+1.5,−0.5)

(d) The trellis has 2 states and 4 stages. The state means the value of st−1, i.e., the previ-
ous transmitted symbol that is memorized by the channel. The paths corresponding to
different sequences are shown in Figure 3.

(e) Due to conditional independence of {yt} given {st}, the conditional pdf is given by

fY |S(y|s) =
1

(2πσ2)2
exp

{
− 1

2σ2

3∑
t=

|yt − st −
1

2
st−1|2

}

Taking natural logorithm, we obtain the log-likelihood function in the problem.

(f) Since all sequences are equally likely, the MAP rule becomes arg maxs log fY |S(y|s), which
leads to the rule given in the problem statement.

(g) The branch metric for each edge should be computed from |yt − st − 1
2st−1|2 and we

need to find the path that has the minimum aggregate branch metric. The optimal
path in the trellis is shown in the following figure 4. The decoded message should be
(s−1, s0, s1, s2, s3) = (−1,+1,−1,+1,−1).
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!1#

+1#

!1#

+1#

!1#

+1#

!1#

+1#

!1#

+1#

!1#

+1#

!1#

+1#

!1#

+1#

(�1.5,�1.5,�1.5,�1.5)

(�1.5,�1.5,+0.5,�0.5)

(�1.5,+0.5,�0.5,�1.5)

(�1.5,+0.5,+1.5,�0.5)

(+0.5,�0.5,�1.5,�1.5)

(+0.5,�0.5,+0.5,�0.5)

(+0.5,+1.5,�0.5,�1.5)

(+0.5,+1.5,+1.5,�0.5)

Figure 3: Trellis and paths for sequences.

!1#

+1#

4#
0#

4#

4#1#
1#

1#
1#

1#
0# 0#

0#
0# 4#

0#

0#

4#

4#

0#

0#

Figure 4: Optimal paths for the decoded sequence.

Problem 13

(Fading channels)

(a) When h is a complex number, it can be written as h = |h|ejφh , where φh denotes the
phase of h. Therefore, the effect of h · s[k] is rotating the constellation by φh and scaling
it by |h|. If the receiver knows h perfectly, then we know the rotated constellation shown
in the following figure with the optimal decision boundaries.
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|h| · d

Re

Im

�h

(b) The error probability is given by

Pe = 1−

1−Q

 |h|·d
2√
σ2

2

2

= 1−
[

1−Q
(√
|h|2 · d2

2σ2

)]2

= 2Q

(√
|h|2 · d2

2σ2

)
−
[
Q

(√
|h|2 · d2

2σ2

)]2

≈ 2Q

(√
|h|2 · d2

2σ2

)

(c) Denote ξ0 = d2

4σ2 . Then, the probability of error given |h| is

Pe(|h|2) ≈ 2Q(
√
|h|2ξ0)

and the average probability of error is

P̄e ≈ E|h|2
{
Pe(|h|2)

}
= E|h|2

{
2Q(

√
|h|2ξ0)

}
= 2E|h|2

{
Q(
√
|h|2ξ0)

}
= 1−

√
ξ0

ξ0 + 1

= 1−
√

1

ξ−10 + 1

(d)

P̄e ≈ 1−
√

1

ξ−10 + 1
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≈ 1−
(

1− 1

2

1

ξ0

)
=

1

2ξ0
= 2 · 1

d2/σ2

For the transmitted constellation, the signal energy E is given by

E =
d2

2

Therefore, the error probability can be expressed as

P̄e =
1
E
σ2

To achieve error probability of 10−3, we need to have

1
E
σ2

= 10−3 ⇒ E

σ2
= 103 = 30dB

Problem 14

(OFDM System)

(a) The impulse response of the channel has a length of two. Therefore, to ensure ISI-free
transmission, the length of the cyclic prefix should be at least one.

(b) Since N = 4, we need to divide the data packet into two blocks:

1,−1, 1,−1

1, 1, 1, 1

Taking N -point IDTFT for each block, we obtain:

0, 0, 1, 0

1, 0, 0, 0

where the IDTFT formula is:

X[k] =
1

4

3∑
n=0

x[n]ej
2π
4
kn

Then, the entire output sequence after adding cyclic prefix would be

0, 0, 0, 1, 0, 0, 1, 0, 0, 0

where the digits with underlines are the cyclic prefixes.

(c) We can evaluate H̃[m] as

H̃[m] = H(z)|
z=ej

2πm
N

= 1 + e−j
2πm
N

= 1 + e−j
2πm
4
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i.e.,

H̃[0] = 2

H̃[1] = 1− j
H̃[2] = 0

H̃[3] = 1 + j

Problem 15

(Cyclic prefix)

(a) The channel has two taps h0 = 1 and h1 = 0.9. After convolving s[k] with h[k], we get
the channel model:

y[k] = h0s[k] + h1s[k − 1] + z[k] = s[k] + 0.9s[k − 1] + z[k]

If we include the ISI term, 0.9s[k−1], with the noise, thus ignoring ISI, the effective noise
power is the power from z[k] plus the power from the ISI. We will call this noise power
σ2, which is equal to:

σ2 = 0.92E +N0/2

where E is the average energy of the signal (which is invariant to time-shifts) and N0/2
is the power from z[k]. Thus, the probability of error is given by

Pe = Q(
d

2σ
) = Q(

1

2

√
E

0.81E +N0/2
)

(b) Taking the expected value of the energy of each term, as we did in class, we can derive an
expression for the increase in energy caused by this “naive” precoding method. For the
system with two taps in this problem, the derivation simplifies to

E[|Sn|2] = E(1 +
|h1|2/|h0|2

1− |h1|2/|h0|2
)

After plugging in values h0 = 1 and h1 = 0.9,

E[|Sn|2] = E(1 +
|0.9|2/|1|2

1− |0.9|2/|1|2 )

= 5.26E

So the transmitter must send 5.26 times as much energy as without precoding.

(c) The length of the cyclic prefix is equal to the “memory” of the channel. This channel has
memory from one previous symbol, so the prefix is of length 1.

(d) For Nc = 2, the cyclic prefix is of length 1, so we send 3 bits for every 2 data bits, so the
reduction in rate is 2/3.
Since we now send 3 bits instead of 2, the excess power is 3/2.

For Nc = 4, the cyclic prefix is of length 1, so we send 5 bits for every 4 data bits,
so the reduction in rate is 4/5.
Since we now send 5 bits instead of 4, the excess power is 5/4.
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(e) Since the error rate is calculated for the same energy per information bit, the energy in the
case of OFDM will be EOFDM = ( Nc

Nc+1)E. The energy factors into the distance between
signals in the error probability. The transfer function of each subchannel also attenuates
the signal, so that

Ei = |Hi|2 · E
The ith channel has the form

Hi =

L−1∑
l=0

h[l]e−
j2πil
Nc = 1 + 0.9e−

j2πi
Nc

For Nc = 2, the channels are H0 = 1 + 0.9 = 1.9 and H1 = 1− 0.9 = 0.1, so

Pe =
1

2
Q

(
1

2

√√√√1.92( Nc
Nc+1)E
N0
2

)
+

1

2
Q

(
1

2

√√√√0.12( Nc
Nc+1)E
N0
2

)

=
1

2
Q

(√
3.61E

3N0

)
+

1

2
Q

(√
0.01E

3N0

)
The factor of 1

2 inside the Q function is from the factor d
2 in the general form Q( d

2σ ). For
Nc = 4, the channels are

H0 = 1.9

H1 = 1 + 0.9e−
jπ
2

H2 = 0.1

H3 = 1 + 0.9e−
j3π
2

The magnitude-squared values, |Hi|2 are then

|H0|2 = 1.92 = 3.61

|H1|2 = 12 + 0.92 = 1.81

|H2|2 = 0.12 = 0.01

|H3|2 = 12 + 0.92 = 1.81

Then,

Pe =
3∑
i=0

1

4
Q

(
1

2

√√√√ |Hi|2( Nc
Nc+1)E
N0
2

)

=
1

4
Q

(√
3.61

2E

5N0

)
+

1

2
Q

(√
1.81

2E

5N0

)
+

1

4
Q

(√
0.01

2E

5N0

)
=

1

4
Q

(√
7.22E

5N0

)
+

1

2
Q

(√
3.62E

5N0

)
+

1

4
Q

(√
0.02E

5N0

)
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