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MIDTERM - SOLUTIONS
Thursday, 13th February, 2014

This exam has 4 problems and 80 points in total.

Instructions

• You are allowed to use 1 sheet of paper for reference. No mobile phones or calculators are
allowed in the exam.

• You can attempt the problems in any order as long as it is clear as to which problem is
being attempted and which solution to the problem you want us to grade.

• If you are stuck in any part of a problem do not dwell on it, try to move on and attempt
it later.

• Please solve every problem on separate paper sheets.

• It is your responsibility to number the pages of your solutions and write on the first
sheet the total number of pages submitted.

Some relations that might be useful:

• Let Z = X + Y , where X and Y are independent random variables with distributions
(p.d.f) fX(x) and fY (y), respectively. Then fZ(z) = fX(x) ⊗ fY (y), the convolution of
the PDFs of X and Y .

• The energy of a waveform x(t) can be calculated as E =
∫∞
−∞ |x(t)|2dt.

• The energy of a vector representation x of a signal x(t) can be calculated as E = xTx.

• The distance between two constellation points x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn)
is d = ‖x− y‖2 =

√∑n
i=1(xi − yi)2.

• Q(a) ,
∫∞
a

1√
2π
e

−x2

2 dx, the tail probability of a standard normal distribution.

• The distribution of an exponential random variable X with parameter λ is

fX(x) =

{
λe−λx x ≥ 0,
0 else.

Good Luck!
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Problem 1 (Short Questions (16 pts))

State whether the following can be labeled with YES or NO. In either case your labeling should
be accompanied by a justification. If the statement is NO, demonstrate what would be the
correct answer.

(a) Let A and B be two i.i.d. Gaussian random variables with mean µ and variance σ2. Then [5pts]

P[2A+B > 3] = Q
(√

3(1−µ)
σ

)
[YES / NO]

→ NO. Let Y = 2A + B. Y is a Gaussian random variable since linear transformation
of a Gaussian random vector results in another Gaussian random vector. Y is Gaussian
with mean 3µ and variance 5σ2. Hence,

P[2A+B > 3] = P[Y > 3] (1)

= P
[
Y − 3µ√

5σ
>

3− 3µ√
5σ

]
= Q

(
3− 3µ√

5σ

)
. (2)

(b) For a QPSK constellation, with symbols taken from {(1, 0), (0, 1), (−1, 0), (0,−1)}), and a [4pts]
channel that adds a phase error that is uniformly distributed on [0, 2π], the minimal error
probability that can be achieved is 3

4 . [YES / NO]

→ YES (assuming equiprobable signaling; other answers shall be accepted with valid
reasoning and computation since the problem does not specify the input probability mass
function to be used; for example one can argue that transmitting only two points from
the constellation each with probability 1

2 will lead to a minimal probability of error of 1
2

but such a scheme would not be QPSK anymore. The most degenerate case would be
transmitting only one point with probability 1 but such a scheme doesn’t even require
any communication in the first place).

π/4

π/4

Figure 1: Constellation with ML regions, assuming equiprobable signaling

Minimal probability of error requires the decision rule to be the Maximum a-posterior
probability (MAP) decision rule. For equiprobable signaling, MAP rule reduces to the
Maximum likelihood (ML) decoding rule, which, for 2-D constellations, can be sketched.
The total probability of error can be computed as the probability of error conditioned on
any point, without loss of generality, since all the points have the same geometry to their
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decision regions (refer Fig. 1).

P[error] =P[error | any transmitted point] (3)

=1− P
[
−π

4
≤ Phase noise ≤ π

4

]
=1− 1

4

=
3

4
. (4)

(c) There are two coins of identical appearance on a table. You know one of the coins is a fair [7pts]
coin, meaning P[Heads] = P[Tails] = 0.5, and the other is biased, with P[Heads] = 0.75,
and P[Tails = 0.25], but you don’t know which one is the fair coin. You pick up one coin
and toss it N times. The result of the ith toss is described by a random variable Xi = xi,
where xi = 1 for a head and 0 for a tail. The quantity SN =

∑N
i=1 xi is a sufficient statistic

for determining whether the coin you tossed is unbiased. [YES / NO]

→ YES, SN is a sufficient statistic. To prove this, it needs to be shown that, if the bias
is indicated as θ,

P[(X1, X2, . . . , XN ) | SN , θ] =P[(X1, X2, . . . , XN ) | SN ], (5)

which is seen as following. If SN is known, then sinceXi are i.i.d. with the same parameter,

P[(X1, X2, . . . , XN ) | SN ] =

{
1

( N
SN

)

∑
iXi = SN ,

0 else.
(6)

The above is independent of θ, thereby proving that SN is a sufficient statistic.

OR

It needs to be shown that Fisher-Neyman factorization theorem holds with SN as a suf-
ficient statistic (this proof follows more in the lines of the course). The following charac-
terization of the conditional distributions explain this. Let H = 0 denote the prior event
that the coin is biased and H = 1 denote the prior event that is otherwise.

PX|H(X | 0) =

(
1

2

)SN
(

1

2

)n−SN

(7)

PX|H(X | 1) =

(
3

4

)SN
(

1

4

)n−SN

. (8)

where the conditional distributions PX|H are factorized into 1×gH(T (X)) where T (X) =
SN is the sufficient characteristic. Since the factorization of conditional distributions as

PX,θ = h(X)× gθ(T (X) = SN ), θ = 0.5, 0.75

holds with h(X) = 1, SN is a sufficient statistic for θ. Note that this statistic is
independent of N and does not require asymptoticity.
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Problem 2 (Bank Lines (23 pts))

Upon walking into a bank, you see two queues of equal number of people, each being served by
a teller. You model the time it takes the tellers to serve a client by exponential distributions
with different parameters λ1 and λ2, where λ1 > λ2. However, you don’t know which teller
serves people at the rate λ1 and which teller serves at the rate of λ2. You observe random
service times X = (X1, X2), where X1, X2 are the times it takes Teller A to service her first
and second customer, respectively. Similarly, you observe Y = (Y1, Y2), the random service
times for Teller B’s first two customers. Assume X1, X2, Y1 and Y2 are all independent of each
other. Your objective is to use your observations to determine, with the least probability of
error, which teller serves at the faster rate of λ1 and join that queue. Note: A teller serving
faster has a higher “rate” of service λ.

(a) Let H = 0 denote the case in which Teller A is faster, and H = 1 denote the case in which [9pts]
Teller B is faster. Find the 2 joint conditional PDFs fX,Y|H(x,y | 0) and fX,Y|H(x,y | 1)
for this hypothesis testing problem.

→ When H = 0, Teller A’s service times are exponential with parameter λ1, and Teller
B’s service times are exponential with parameter λ2. Since X1, X2, Y1, Y2 are mutually
independent random variables, the joint conditional pdf is simply the product of each
marginal conditional pdf:

fX,Y|H(x,y | 0) = (λ1e
−λ1x1)(λ1e

−λ1x2)(λ2e
−λ2y1)(λ2e

−λ2y2)

= λ21λ
2
2e
−λ1(x1+x2)−λ2(y1+y2), x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0. (9)

Similiarly,

fX,Y|H(x,y | 1) = λ21λ
2
2e
−λ2(x1+x2)−λ1(y1+y2), x1 ≥ 0, x2 ≥ 0, y1 ≥ 0, y2 ≥ 0. (10)

(b) Find the optimum Maximum Likelihood (ML) decision rule for this hypothesis testing [6pts]
problem.

→ The ML rule is given by

fX,Y|H(x,y | 0)
Ĥ=0
≷
Ĥ=1

fX,Y|H(x,y | 1). (11)

We immediately see that the λ21λ
2
2 terms on both sides cancel, and we can take the log of

both sides to give:

−λ1(x1 + x2)− λ2(y1 + y2)
Ĥ=0
≷
Ĥ=1

−λ2(x1 + x2)− λ1(y1 + y2),

which simplifies further to

x1 + x2
Ĥ=1
≷
Ĥ=0

y1 + y2. (12)

Note that the inequalities change direction as the way it is written with x1, x2 on the left
hand side because gathering λ2 − λ1 together yields a negative number on both sides as
λ1 > λ2.
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(c) Compute the error probability assuming that PH(H0) = PH(H1) = 1
2 . [8pts]

→ Begin by defining U = X1 +X2 and V = Y1 + Y2. Then,

Pe =
1

2

[
P(Ĥ = 1 | H = 0) + P(Ĥ = 0 | H = 1)

]
=

1

2
[P(U > V | H = 0) + P(V > U | H = 1)] . (13)

To find these conditional error probabilities, we first must find the conditional distributions
of U and V . Since X1 and X2 are independent, the conditional pdf of U given H0 can be
found by convolving the conditional pdfs of X1 and X2 given H:

fU |H(u | 0) =

∫ ∞
−∞

fX1|H(x1 | 0)fX2|H(u− x1 | 0)dx1

=

∫ ∞
−∞

λ21e
−λ1(x1+(u−x1))dx1

= λ21

∫ z

0
e−λ1udx1

= λ21ue
−λ1u, u ≥ 0. (14)

We can find the remaining three conditional pdf’s in a similar manner:

fU |H(u | 1) = λ22ue
−λ2u, u ≥ 0,

fV |H(v | 0) = λ22ve
−λ2v, v ≥ 0,

fV |H(v | 1) = λ21ve
−λ1v, v ≥ 0.

Now, we find the conditional probabilities:

P[V > U | H = 1] =

∫ ∞
0

∫ ∞
u

λ21λ
2
2uve

−λ2ue−λ1vdv du (15)

= λ21λ
2
2

∫ ∞
0

ue−λ2u
(∫ ∞

u
ve−λ1vdv

)
du

= λ22

∫ ∞
0

ue−(λ1+λ2)u(1 + λ1u) du

=

(
λ22

∫ ∞
0

ue−(λ1+λ2)u du

)
+

(
λ22λ1

∫ ∞
0

u2e−(λ1+λ2)u du

)
=

λ22
(λ1 + λ2)2

(
1 +

2λ1
λ1 + λ2

)
=
λ22(3λ1 + λ2)

(λ1 + λ2)3
. (16)

By inspection, we can also see that the integral for the other conditional error term will
be the same, resulting in an average error probability of

Pe =
λ22(3λ1 + λ2)

(λ1 + λ2)3
. (17)
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Problem 3 (Waveform Representations(17 pts))

Consider the following signals. Let the number of messages M = 3 and if H = i, i = 1, 2, 3, we
transmit the signal si(t):

(a) Find a set of orthonormal basis functions for this signal set. [3pts]

→ The norm of the three signals is computed and found out to be:

‖s1(t)‖ =1, (18)

‖s2(t)‖ =1, (19)

‖s3(t)‖ =
√

2. (20)

Going through Gram-Schmidt would yield s1(t) and s2(t) as two orthonormal basis func-
tions for the signaling set. s1(t) is orthogonal to s2(t) since 〈s1(t), s2(t)〉 =

∫ 1
0 1 · 0 dt +∫ 2

1 0 · 1 dt = 0.

(b) Find the data symbols corresponding to the signals above for the basis functions you found [3pts]
in (a).

→ The data symbols corresponding to the signals using the above standard basis are:

s1 =[1, 0], (21)

s2 =[0, 1], (22)

s3 =[1, 1]. (23)

(c) What is the average transmitted energy if all messages are equiprobable? [3pts]

→ The average energy of this signaling set is found out to be

E =
1

3
[1 + 1 + 2] =

4

3
. (24)

(d) Now suppose we send the signal over an AWGN channel, i.e., [8pts]

H = i : y(t) = si(t) +N(t),
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where N(t) is AWGN noise with power spectral density of N0
2 = 4 × 10−4 Watts/Hz.

Further suppose that all messages are equally likely, i.e., PH(1) = PH(2) = PH(3) = 1
3 .

Bound the error probability for this communication scheme using the most appropriate
form of the union bound.

→ The constellation, along with the ML decision regions, is sketched as shown in Fig. 2.
The most appropriate (tightest) bound on the probability of error that can be obtained

1,1

1,0

0,1

Figure 2: Constellation with ML regions

is the individual nearest neighbour union bound which would yield

Pe,INNUB ≤
2

3
Q

(
1

2σ

)
+

2

3

[
Q

(
1

2σ

)
+Q

(
1√
2σ

)]
. (25)

Problem 4 (Constellation Trade-offs (24 pts))

Suppose you wish to design a system in which 2 bits are transmitted per symbol. Your basis
functions are rectangular pulses of width 1 allowing you to use up to 4 time “slots”, as shown.

Your primary goal is to create a signaling scheme in which, given an average total energy E
and AWGN channel noise power (variance) of σ2, the probability of error is at a minimum. A
secondary goal is to complete each 2-bit transmission using the fewest number of time slots.
You can assume that the system signals equiprobably.

Now consider the following signaling schemes:
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Scheme 1 Scheme 2 Scheme 3

x0

(√
E, 0, 0, 0

) (√
E, 0, 0, 0

) (√
E
2 , 0, 0, 0

)
x1

(
0,
√
E, 0, 0

) (
−
√
E, 0, 0, 0

) (
−
√

E
2 , 0, 0, 0

)
x2

(
0, 0,
√
E, 0

) (
0,
√
E, 0, 0

) (√
3E
2 , 0, 0, 0

)
x3

(
0, 0, 0,

√
E
) (

0,−
√
E, 0, 0

) (
−
√

3E
2 , 0, 0, 0

)
Your communication system transmitting waveforms for each of the 2 bit messages, per

symbol, can be represented as:

H = i, i ∈ [0, 3] : y(t) =si(t) + Z(t),

si(t) =
3∑
j=0

xi,jφj(t),

xi =[xi,0, xi,1, xi,2, xi,3]
T .

(a) Which of the scheme(s) have the largest minimum distance between transmitted signal [9pts]
points?

→ Scheme 1 has a minimum distance of
√

2E (the same distance between all points),

Scheme 2 has a minimum distance (say, between points
(
−
√
E, 0, 0, 0

)
and

(
0,
√
E, 0, 0

)
)

of
√

2E and Scheme 3 has a minimum distance (say, between points
√

3E
2 and

√
E
2 ) of

less than
√

2E. Schemes 1 and 2 are better than the third in terms of minimum distance
and they have the “largest” minimum distance.

(b) Of the scheme(s) with the largest minimum distance, which one requires the fewest number [3pts]
of time slots to complete a transmission?

Note: A time slot is “used” by the system only if there’s at least one signaling waveform
that has a non-zero voltage value in that time-slot.

→ Of the two schemes identified above, Scheme 2 requires the fewest number of time slots
to complete a transmission. It should also be noted that Scheme 2 is better than Scheme
1 even considering only distances as a measure since Scheme 2 has two distances that are
of magnitude 2

√
E while Scheme 1 has the same distance of

√
2E between any two points.

Aside, Scheme 1 is an example of “orthogonal” signaling whereas Scheme 2 is an example
of “Bi-orthogonal” signaling.

(c) Given your answer in part (b), derive the MAP rule for the system and calculate the [12pts]
probability of error as a function of

√
E and σ2 for that symbol constellation.

→ Decision rule:

The constellation in Scheme 2 is an example of a Bi-orthogonal signaling scheme with
this scheme representing a QPSK system. It has been mentioned that the system signals
equiprobably. Hence the ML decision regions are enough to make the best decision on a
received Y = [y1, y2]

T . The constellation with ML regions is given as follows:
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√E,0

0,√E

0,-√E

-√E,0

Figure 3: QPSK with ML regions

The decision rule is written out as:

d(Y) =


x0 {y1 > y2} ∩ {y1 > −y2},
x2 −y2 ≤ y1 ≤ y2,
x1 {y1 < y2} ∩ {y1 < −y2},
x3 else.

(26)

Probability of error:

To find the probability of error over an AWGN channel, rotate the constellation 45◦, as
shown in Fig. 4. This rotation is allowed since AWGN is symmetric and the probability of
error is rotation invariant. The probability of error is found out, by symmetry, conditioning

-√(E/2),√(E/2)

-√(E/2),-√(E/2)

√(E/2),√(E/2)

√(E/2),-√(E/2)

Figure 4: QPSK with rotated ML regions

on the point x̃0 =

(√
E
2 ,
√

E
2

)
. Let the two noise components be N1, N2.

Pe = Pe|x̃0
=1− Pc|x̃0

(27)

=1− P

[
N1 <

√
E

2

]
× P

[
N2 <

√
E

2

]

=1−

[
1−Q

(√
E

2σ2

)]2

=2Q

(√
E

2σ2

)
−

[
Q

(√
E

2σ2

)]2
. (28)

Aside: An individual nearest neighbour union bound would yield

Pe,INNUB ≤ 2Q

(√
E

2σ2

)
(29)
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which is very close to the accurate value obtained from (28) if the argument inside the
Q-function is large enough since the quadratic term in (28) will vanish exponentially with
increasing argument inside the Q-function. The argument in this discussion is nothing
but the SNR which is given by E

2σ2 where E is the average energy of the constellation.
Note that for a 2-D signaling scheme such as this, the noise power is 2σ2 with the variance
equally distributed as σ2 along each dimension.
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