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Instructions

• You are allowed to use 2 sheets of paper for reference. No mobile phones or calculators
are allowed in the exam.

• You can attempt the problems in any order as long as it is clear as to which problem is
being attempted and which solution to the problem you want us to grade.

• If you are stuck in any part of a problem do not dwell on it, try to move on and attempt
it later.

• Write on this sheet in the space provided, the total number of pages submitted. The
pages in this booklet are numbered already; number the extra pages that you attach.
Strike off unused pages.

• The number of pages (including this page) in this booklet is 23. Make sure that your
booklet has all the pages printed clearly before starting the exam.

Good Luck! Go Bruins!
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Some relations/definitions:

• PX denotes the probability mass function of a discrete random variable X whose realiza-
tions are denoted x. Bold symbols denote the vector analogs.

• ∀ denotes “for all”; ∈ denotes “element(s) of” (set membership); ∪ denotes “union”; ∩
denotes “intersection”.

• In an n-dimensional space, the n unit vectors are represented as ei, i = 1, 2, . . . , n which
means for j = 1, 2, . . . , n,

ei,j =

{
1 i = j,
0 else.

• The energy of a vector representation x of a signal x(t) can be calculated as E = xTx =
‖x‖2 where ‖ · ‖ denotes the norm or length of a vector.

• The Euclidean distance between two constellation points x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) is d = ‖x− y‖2 =

√∑n
i=1(xi − yi)2.

• The average energy E of a constellation of vectors si, i = 0, 1, . . . ,M − 1 is given as
E =

∑M−1
i=0 Ps(si)‖si‖2.

• Q(a) ,
∫∞
a

1√
2π
e

−x2
2 dx, the tail probability of a standard normal distribution which is

∼ η(0, 1). ∼ denotes “distributed as”.

• The binary erasure channel (BEC) is an abstract channel model which is described as
follows. The input is either received correctly or it becomes invalid as an “erasure”.

0

1

0

1

e

1-p

1-p

p

p

Some numerical, logarithmic, Q-function, trigonometric values:

2× 5.375 = 10.75 Q(0) = 0.5 sin
(
π
2

)
= 1 cos

(
π
2

)
= 0

Q(∞) = 0 sin2
(
π
4

)
= 0.5

log10
(
1
3

)
= −0.4771 Q(−∞) = 1 sin

(
π
3

)
= 0.8660 cos

(
π
3

)
= 0.5

log10
(
1
2

)
= −0.3010 Q(x) ≈ 0, x > 6 sin

(
2π
3

)
= 0.8660 cos

(
2π
3

)
= −0.5

log10
(
2
3

)
= −0.1761 Q(x) ≈ 0.5, x ≈ 0 sin (π + θ) = − sin θ cos (π + θ) = − cos θ

log( 3
2)

log(3) = 0.3691 Q(
√

15) = 5.375× 10−5 sin
(
π
8

)
= 0.3827 cos

(
π
8

)
= 0.9239

log10(107.5) = 2.0314 Q(
√

7.5) = 0.0031 sin
(
2π
8

)
= 0.7071 cos

(
2π
8

)
= 0.7071

log10(6200) = 3.7924 Q(x) = 1−Q(−x), ∀x sin
(
3π
8

)
= 0.9239 cos

(
3π
8

)
= 0.3827

Some identities:

log(a · b) = log a+ log b 2 sin θ1 cos θ2 = sin(θ1 + θ2) + sin(θ1 − θ2) ejθ = cos θ + j sin θ
log(a/b) = log a− log b 2 cos θ1 cos θ2 = cos(θ1 + θ2) + cos(θ1 − θ2)
k × log(a · b) = log(a · b)k 2 sin θ1 sin θ2 = cos(θ1 − θ2)− cos(θ1 + θ2)

log
(
1
a

)
= − log a sin2(θ) = 1−cos(2θ)

2

cos2(θ) = 1+cos(2θ)
2
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Problem 1 (Overview (24 pts))

In the following, clearly indicate, in your answer, your final choice along with the accompanying
justifications/mathematical treatment for a [YES/NO] type question. Also for all the questions,
give a clear and supporting mathematical treatment accompanying your answer.

(a) (Noise-less and noisy observations) Consider a system which transmitsM messagesHi, i = [4pts]
0, 1, . . . ,M − 1 as unit vectors along M dimensions i.e. the signaling set, in vector repre-
sentation, is

si = ei+1, i = 0, 1, . . . ,M − 1.

Assume that M is even and denote the transmitted message as

X = si, if H = i.

A vector noisy channel affects each component of the transmitted vector X independently;
with additive Gaussian noise N ∼ η(0, σ2) only on the odd numbered dimensions of the
vector. The even numbered dimensions are received unaffected. In other words, if Y is
the received message vector, then

Yj =

{
Xj +Nj j = 1, 3, 5, . . . ,M − 1.
Xj j = 2, 4, 6, . . . ,M.

(1)

Assuming that the messages at the transmitter are equally likely, design the optimal
decoder d(Y) which minimizes the probability of error for this system.

→ (Solution) Note that the even-numbered dimensions are received unaffected; hence any
y with ‘1’ in one of the dimensions j : j = 2, 4, . . . ,M should be decoded as follows:

d(y) = sj−1 if yj = 1 for exactly one of j = 2, 4, . . . ,M. (2)

In the case that all the even-numbered dimensions of the received vector y have a 0 in
them, we apply the MAP rule which reduces to the ML rule since the prior probabilities of
signals are equal. The decoder can be derived/written as follows. Denote the conditional
probability density function of y conditioned on hypothesis i as fy|H(y | i).

yj = 0, ∀j = 2, 4, . . . ,M =⇒ d(y) =sj−1 : j = arg max
i=1,3,...,M−1

fy|H(y | i) (3)

=sj−1 : j = arg max
i=1,3,...,M−1

[
1

√
2πσ2

M
e−

1
2σ2

∑M
k=1(yk−ei,k)2

]
=sj−1 : j = arg max

i=1,3,...,M−1
e−

1
2σ2

∑M
k=1(yk−ei,k)2

=sj−1 : j = arg min
i=1,3,...,M−1

M∑
k=1

(yk − ei,k)2

=sj−1 : j = arg min
i=1,3,...,M−1

−2yi

yj = 0, ∀j = 2, 4, . . . ,M =⇒ d(y) =sj−1 : j = arg max
i=1,3,...,M−1

yi. (4)

Note that the above is the MAP decoding rule for orthogonal signaling usingM -dimensional
unit vectors with an exception of presence of noise only in the odd-numbered dimensions.
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(b) (Waveform channel design) Consider a set of 2 “antipodal” waveforms s1(t) = −s0(t) [5pts]
used in a binary signaling scheme. Assuming that the channel adds AWGN noise n(t), the
optimal waveform receiver can be implemented using just one correlator and a threshold
comparator. [YES/NO] Sketch the optimum receiver structure for your answer if y(t) =
si(t) + n(t), i = 0 or 1 denotes the received signal. Note: A complete mathematical
derivation is not necessary.

→ (Solution) YES. The signaling set is specified to be s0(t) = −s1(t). The number
of basis functions required to describe this signaling set is just 1 since the 2 signals are
linearly dependent on each other. In particular, if we denote the energy of these 2 signals
as E, then the basis function required to describe this binary signaling set is

ψ0(t) =
s0(t)√
E
. (5)

With respect to this basis function, the vector representation of the two signals are:

s0 =
√
E, s1 = −

√
E. (6)

On an AWGN channel, with prior probabilities of these signals as PH(0), 1−PH(0), where
PH(0) denotes the prior probability of signal s0(t), the optimum receiver will consist only of
one correlator (which can also be implemented as a matched filter) along with a threshold
comparator which compares the result of correlation against a threshold ‘tr’ which is a
function of PH(0). We sketch the receiver as shown in Fig. 1.

∫ y(t)

ψ0(t)

>tr, decide s0(t)

≤tr, decide s1(t)

Figure 1: Optimum receiver for antipodal signaling

(c) (Optimum receiver) Suppose one of M equiprobable signals xi(t), i = 0, 1, . . . ,M − 1 is [4pts]
transmitted during a period of time T over an AWGN channel. Each signal is identical
to all others in a sub-interval [t1, t2], where 0 < t1 < t2 < T . The optimum receiver can
ignore the sub-interval [t1, t2]. [YES/NO] Support your answer with proper justification.

→ (Solution) YES. Denote the vector representation of the signals as xi and also denote
the received signal as r(t) with its vector representation as r. The optimum receiver over
an AWGN channel for equiprobable signaling is the minimum distance decoder (MAP
=⇒ ML ⇐⇒ Nearest neighbour decoding) and the solution follows as:

Ĥ = arg min
i
‖r− xi‖ (7)

⇐⇒ arg max
i

2rTxi + xTi xi = arg max
i

∫ T

0
(2r(t) + xi(t))xi(t)dt

⇐⇒ arg max
i

∫ t1

0
(2r(t) + xi(t))xi(t)dt+

∫ t2

t1

(2r(t) + xi(t))xi(t)dt+

∫ T

t2

(2r(t) + xi(t))xi(t)dt

(8)

⇐⇒ arg max
i

∫ t1

0
(2r(t) + xi(t))xi(t)dt+

∫ T

t2

(2r(t) + xi(t))xi(t)dt, (9)

since the value of the integral
∫ t2
t1

[·] dt in (8) evaluates to the same for every i.
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(d) (Linear block code over BEC) Consider the following parity-check matrix of a linear block [5pts]
code:

H =

1 1 1 0 1 0 0
1 1 0 1 0 1 0
1 0 1 1 0 0 1

 (10)

The decoder for the code, on account of having been deployed to decode over a Binary
erasure channel (BEC), received the following word:

y = [e e 0 e 0 1 0] (11)

where e denotes an erasure. The decoder can decode this received word to a valid code-
word. [YES/NO] If yes, what is the decoded codeword? If no, demonstrate why not.

→ (Solution) YES. The requirement for y to be a valid codeword is that it should satisfy
the “parity-check” equation as follows:

yHT = 0. (12)

By using the above, we write down the 3 equations that we obtain as:

y0 ⊕ y1 = 0, y0 ⊕ y1 ⊕ y3 ⊕ 1 = 0, y0 ⊕ y3 = 0. (13)

For the above, there is a unique solution since the three equations are linearly independent
of each other. Namely, the solution is y0 = y1 = y3 = 1. Hence the received word can be
decoded (uniquely) to the valid codeword

c = [1 1 0 1 0 1 0] . (14)
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(e) (OFDM - Time-varying channel) Consider an OFDM system with Nc = 3 sub-carriers [6pts]
implemented for the dispersive channel (ISI channel) given by the following z-transform:

H(z) = 1.33 + 0.33z−1 + 0.33z−2. (15)

Assume that there is AWGN noise added at the receiver. The transmitter employs a
certain transmission strategy and uses all the sub-carriers available to it. Denote the
probability of symbol error with this transmit scheme as Pe. After some time, the channel
condition changes as follows:

Hnew(z) = 1.67 + 0.17z−1 + 0.17z−2. (16)

The transmitter continues to employ the same transmit strategy. Assuming that the
receiver knows the new channel coefficients, the probability of symbol error for the present
channel satisfies Pnew < Pe. [YES/NO] Support your answer with proper justification.

→ (Solution) YES. In the following, we use “channel” and “sub-carrier” interchangeably.
Consider the Nc-point DFT of the original channel hl = [1.33 0.33 0.33] which is given
as

Ĥ = [2 1 1]. (17)

The above can be computed mathematically using the values of sin
(
π
3

)
, sin

(
2π
3

)
, cos

(
π
3

)
and cos

(
2π
3

)
given in the second page. For OFDM, the parallel AWGN channel represen-

tation that we obtain is given as

ŷ[m] = Ĥ[m]x̂[m] + ŵ[m], m = 1, 2, 3. (18)

where x̂[m] are the transmitted data symbols (before IDFT at the transmitter).

First we note that the DFT of the channel coefficients is a vector with non-zero components
and hence the transmitter can signal over all the 3 available sub-carriers. Denote the
average energy of the constellations used by the transmitter as E1, E2, E3. The problem
says that the transmitter uses all of its sub-carriers and hence we make this assumption
of energies. The signal-to-noise ratio (SNR) of the individual sub-carriers are given as
(assuming, without loss of generality that, ŵ is AWGN with statistic (0, σ2) over each
channel m)

SNR1 =
|Ĥ[1]|2E1

σ2
, SNR2 =

|Ĥ[2]|2E2

σ2
, SNR3 =

|Ĥ[3]|2E3

σ2
(19)

SNR1 =
4 · E1

σ2
, SNR2 =

1 · E2

σ2
, SNR3 =

1 · E3

σ2
. (20)

For the new channel, we similarly find the DFT coefficients to be

Ĥnew = [2 1.5 1.5], (21)

for which the corresponding SNRs are

SNRnew,1 =
4 · E1

σ2
, SNRnew,2 =

2.25 · E2

σ2
, SNRnew,3 =

2.25 · E3

σ2
. (22)

Since the signal-to-noise ratios of sub-carriers 2, 3 are better for the new channel compared
to the old, the probability of error should satisfy Pnew < Pe.
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Problem 2 (Tetrahedral Die (10 pts))

Two four-sided dice, each labeled with 0, 1, 2, 3 are in a box. For such a die, once we roll it, we
agree to observe the number on the bottom face!

• One die is fair (equiprobable outcomes on a roll). Denote this die f .

• The other die is loaded so that 0 is observed with probability 1/2, the remaining numbers
being equally likely. Denote this die u.

In N rolls of a die d which can be either f or u (the die is either fair or unfair), the probability
of observing ki occurrences of face i, where k0 + k1 + k2 + k3 = N is given by the multinomial
distribution:

P|d(k0, k1, k2, k3 | d) =

[
N !

k0!k1!k2!k3!

]
P k00|dP

k1
1|dP

k2
2|dP

k3
3|d (23)

where Pi|d, i = 0, 1, 2, 3 are the probabilities of observing face i, conditioned upon die being
d = u or d = f .
Objective: The experiment consists of picking a die with equal probability, tossing it N = 10
times and observing the number of appearances of each of 0, 1, 2 and 3. The task is to decide
which die was chosen.

(a) Formulate the maximum likelihood (ML) decision rule and show that it reduces to [8pts]

k0
unfair
≷
fair

t. (24)

The expression for t should either be a numerical value or a numerical expression which
can further be evaluated. Note: Use log10 values provided in the second page if necessary.

(b) Given that 10 rolls produce observations of k0 = 5, k1 = 2, k2 = 1, k3 = 2, what would you [2pts]
conclude?

(Solution starts here)

(a) → We start with the MAP rule which is equivalent to the ML rule since the prior prob-
abilities of picking either die from the box are equal. For this, we summarize the given
conditional probabilities as follows:

Pi|d(0 | f) =
1

4
, Pi|d(1 | f) =

1

4
, Pi|d(2 | f) =

1

4
, Pi|d(3 | f) =

1

4
. (25)

Pi|d(0 | u) =
1

2
, Pi|d(1 | u) =

1

6
, Pi|d(2 | u) =

1

6
, Pi|d(3 | u) =

1

6
. (26)

The MAP (ML) rule for deciding on the die is written and the solution is obtained as
follows:

MAP: P|d(k0, k1, k2, k3 | u)
unfair
≷
fair

P|d(k0, k1, k2, k3 | f) (27)(
1

2

)k0 (1

6

)k1 (1

6

)k2 (1

6

)k3 unfair
≷
fair

(
1

4

)10

Since k1 + k2 + k3 = 10− k0,
(

2

3

)10−k0 unfair
≷
fair

(
1

2

)k0
10 log10

(
2

3

)
unfair
≷
fair

k0 log10

(
1

3

)
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k0
unfair
≷
fair

10
log10

3
2

log10 3
(28)

=⇒ k0
unfair
≷
fair

3.691. (29)

The result means that k0 is a sufficient statistic for deciding on the hypothesis testing
problem.

(b) Since k0 = 5 > 3.691, we conclude that the die that we picked is most likely the “unfair”
die. Note that the qualifier “most likely” is used because the MAP rule does have some
probability of error.
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Problem 3 (Unknown Priors (14+5 pts))

You receive a signal Y = X +Z, where Z is Gaussian ∼ (0, 1) and the prior distribution PX of
the transmitted signal X as per your belief is given by

PX(x) =

{
q x = 1,
1− q x = −1.

(30)

(a) Derive the maximum a-posteriori probability (MAP) rule for the hypothesis testing prob- [3pts]
lem of decoding d(Y ) = X̂ assuming q = e

1+e where “e” refers to the standard exponent.
Express the MAP decoding rule as

y
x̂ = 1
≷

x̂ = −1
t. (31)

with an explicit value for t.

(b) Unfortunately, it turns out that the prior distribution of X that you have is incorrect [6pts]
(sorry about that!). Instead, X has the distribution

PX(x) =

{
p x = 1,
1− p x = −1,

(32)

where 0 ≤ p ≤ 1. You, however, do not know that you’ve been given the wrong distribution
and are using the decision rule from part (a). What is the resulting error probability?

(c) The worst prior: So much for wrong prior information; what value of p yields the largest [5pts]
probability of error for the decision rule from part (a)?

(d) Bonus: (Exact explanation/mathematical argument required; no partial credit) [5pts]

“Minimax” strategy for combating the worst prior: Someone reveals that your value q
is incorrect, but you still do not have any knowledge about what the exact prior p is.
Assume that whatever value of q you get to choose, the value of p that provides the worst
probability of error for that q will be chosen by nature. This looks hopeless really, but
there is something that you can still do:

1. Namely, you can minimize the worst that you can do! What should be your choice
of q that minimizes this worst-case probability of error of all choices of q that you
can assume?

2. Explicitly state this minimum of all worst-case error probabilities.

Justify your answer rigorously.

(Solution starts here)

(a) For binary signaling, the MAP rule (from notes of Lecture 3) is given as:

y
X̂=1
≷

X̂=−1

σ2

2
ln

(
1− q
q

)
(33)

y
X̂=1
≷

X̂=−1
− 0.5. (34)
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(b) The probability of error is obtained from the law of total probability as follows:

Pe =PX(X = −1)P[Z > 0.5] + PX(X = 1)P[Z < −1.5] (35)

=(1− p) ·Q(0.5) + p ·Q(1.5). (36)

(c) We see that nature can choose between 0 ≤ p ≤ 1. In order to maximize the probability of
error, consider (36) in a more generic form so that we can get an intuition of what nature
should be doing. The probability of error for a binary signaling system with actual prior
probabilities p, 1− p and our beliefs q, 1− q is written as

Pe =PX(X = −1) ·B + PX(X = 1) ·A (37)

=(1− p) ·B + p ·A. (38)

where A = P[error | X = 1], B = P[error | X = −1] are constants that only depend upon
our decision rule threshold that we derive if we are given a certain information about the
prior probabilities. In this case, our belief about the priors are q, 1− q and constants A,B
are Q(1.5), Q(0.5) respectively.

We see that, in order to maximize (38), nature has to put all its possible weight as the
multiplier of the maximum value of A,B. Hence in our case, the value of p that yields
the worst-case probability of error for us is

p = 0 (39)

since B > A.

(d) Bonus:

1. From the more generic analysis as done above, we can conclude that, if we are to
minimize the worst-case probability of error, we should give nature no incentive to
choose any value of p since it decides on the value of p when it looks at the values
A,B. If that is the case, then we should make sure that the values of A and B are
equal. This is the only case when nature cannot do better (better for nature means
being more adversarial to us) by choosing a particular value of p over any other value
of p since if A = B,

Pe =p ·A+ (1− p) ·A
=A, ∀ 0 ≤ p ≤ 1. (40)

Thus, if we are to set our values A = B, the following should be done:

A =B

P[error | X = 1] =P[error | X = −1] (41)

P[Z < threshold− 1] =P[Z > threshold + 1] (42)

P[Z > 1− threshold] =P[Z > 1 + threshold] (43)

whose only solution is threshold = 0. If the optimal value of threshold that minimizes
the worst-case probability of error is 0, then our assumption of prior, according to
(33), should be

PX(1) = PX(−1) =
1

2
(44)

which is, unsurprisingly, the underlying assumption of a “maximum likelihood” de-
coding rule.
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2. Once we assume q = 1 − q = 1
2 , we see that the conditional probability of error for

both the hypotheses are obtained as

A = B = Q(1) (45)

using which we obtain the minimum of all worst-case total probability of error as
Pe = Q(1).
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Problem 4 (M-ary Signaling and Binary Fading Channel(19 pts))

Consider the M-PSK constellation shown in Fig. 2. The constellation is used by a system over
an AWGN binary fading channel wherein the noise components of n along the two dimensions
are independent of each other and are identically ∼ (0, σ2). The transmitted point X = x is

selected equiprobably from one of the constellation points sm =
√
Eej

2πm
M ,m = 0, 1, . . . ,M − 1

and the received point is written as

y = αx + n. (46)

Throughout this problem, assume that the receiver knows α for every received y and hence it
can decode using a modified AWGN MAP (ML) rule; α is a real-valued random variable.

M"PSK&

Figure 2: M-PSK

Note: You may find definitions (as a reference) and numerical values on the second page
useful while answering the following.

(a) Determine the minimum distance dmin of the received constellation (αX) as a function [3pts]
of its average energy and M . For this, first determine the average energy of the received
constellation by conditioning on α = a where a is any constant.

(b) Bound the average probability of symbol error Pe|α using the individual nearest neighbour [4pts]
union bound (INNUB) and express it as a function of the average energy (which is a
function of conditioning on the fading parameter α = a), M and σ2. Use the relationship
derived in (a) to express dmin in terms of the average energy and M .

(c) Denote E
2σ2 = SNR. The binary fading random variable α is distributed as follows: [5pts]

Pα2(α2 = a2) =

{
1

SNR a2 = 7.5× 1
SNR ,

1− 1
SNR a2 = 103 × 1

SNR .
(47)

What is the probability of symbol error Pe? Note: The probability of symbol error Pe is
written using the law of total probability as

Pe =
∑
α

Pe|αP (α).

(d) Given a symbol error rate requirement of Pe ≤ 10−6, which constellation among M = 4 [7pts]
andM = 2 is better and (approximately) by how many dBs? Hint: Compare the minimum
required operating SNR for achieving the given symbol error rate requirement using the
bound obtained. Note: A quantity “x” in decibels (dB) is 10 · log10 x.
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(Solution starts here)

(a) The average energy is given as
∑M−1

m=0 PH(m)‖sm‖2. It is given that the signals are
equiprobable (which is intuitive to expect in a real-time system design). The energy of
every point is given by the square of norm of the signal point. Conditioning on α = a, the
received constellation is the transmitted constellation scaled by a factor of ‘a’. Hence,

‖sm‖2 = a2E‖e
j2πm
M ‖2 = a2E. (48)

Given the fact that every signal point is equiprobable, the received average energy, con-
ditioned on α = a, is equal to a2E.

The minimum distance of the constellation can be computed trigonometrically. Consider
a part of the constellation shown in Figure 3.

2π/M

dmin

Figure 3: Minimum distance of M-PSK

The length of the arc between any two nearest points is a close approximation to the
minimum distance dmin as shown in the figure, but an exact computation is possible by
applying law of sines to the isosceles triangle. The radius of the circle, conditioning on
α = a, is a

√
E, seen from the complex representation of the signal points as rejθ:

dmin

sin 2π
M

=
a
√
E

sin
π− 2π

M
2

dmin =a
√
E

(
sin 2π

M

cos π
M

)
=2a
√
E sin

( π
M

)
. (49)

(b) For the individual nearest neighbour union bound (INNUB), we see that every point
has 2 neighbours, both at the distance dmin which implies that the bound, due to the
equiprobable nature of all the signal points, reduces to simply calculating it for just one
signal point as follows:

Pe|α=a ≤
∑

j∈Nml(m)

Q

(
‖sm − sj‖

2σ

)

=2Q

(
dmin
2σ

)
=2Q

(√
a2 sin2

( π
M

) E
σ2

)
. (50)
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(c) By denoting E
2σ2 = SNR, (50) is used to compute the total probability of error (by using

law of total probabilities) as:

Pe ≤
1

SNR
2Q

(√
2 sin2

( π
M

)
· 7.5

)
+

(
1− 1

SNR

)
2Q

(√
2 sin2

( π
M

)
· 103

)
. (51)

(d) First we note that for values of M that are of interest to us, the second term in (51) is
approximately equal to 0. Hence, we proceed to find the minimum required SNR, firstly
for M = 2, as follows:

Pe,M=2 ≤
1

SNR
2Q

(√
2 sin2

( π
M

)
· 7.5

)
=

1

SNR
2Q

(√
2 sin2

(π
2

)
· 7.5

)
=

1

SNR
2Q
(√

15
)

(52)

Pe ≤ 10−6 =⇒ SNRM=2 ≥2Q
(√

15
)

106 (53)

=⇒ SNRM=2 ≥107.5 or 20.314dB. (54)

Similarly, we can obtain a bound on the required SNRM=4 as

SNRM=4 ≥ 37.924dB (55)

which leads us to conclude that the constellation with M = 2 is approximately 17.6dB
superior to the constellation with M = 4.

Note: The emphasis here though is that with a fading channel like this, the probability
of error scales linearly (inversely proportional) as seen in (52) with respect to SNR. This
suggests that the probability of error drops very slowly (linearly) with increasing SNR as
compared to the AWGN channel case where it would drop exponentially (as an argument
of the Q-function). This is one of the foremost reasons why design for wireless systems is
a comparatively challenging task than design for wired systems where fading is not much
of a concern.
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Problem 5 (Convolutional Code and OFDM(17 pts))

Consider a convolutional code described by the state diagram of Fig. 4. An encoder structure is
shown in Fig. 5. The state diagram is complete but the structure of the encoder is incomplete.
→State labels in the state diagram are given in the order bj−1, bj−2 i.e. for example, state

label “10” corresponds to bj−1 = 1, bj−2 = 0.
→Outputs in the state diagram are given in the order c2j−1c2j i.e. for example, if the

encoder is in state “01” and the input is bj = 1, then the output is c2j−1 = 1, c2j = 0 which is
represented as “10”.

00

0110

11

0,011,11

0,00

1,10

0,11

1,00

1,01

0,10

Figure 4: Complete state diagram

DELAY DELAY
Input

bj

c2j-1

c2j

Outputs
bj-1 bj-2

??

??

Figure 5: Incomplete encoder structure

(a) Complete the design of this encoder by finding the inputs to the XOR adders which output [7pts]
c2j and c2j−1 i.e. copy the incomplete encoder structure and then add to it the necessary
connections to the adders such that the outputs shown in the state diagram are generated.

(b) A four-state rate-1/2 convolutional code (like the one above) is used for transmission over [10pts]
an ISI channel by employing OFDM. We map the output of the convolutional code (using
BPSK) as:

x̂n =

{
−1 cn = 1,
1 cn = 0.

(56)
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Premise of the problem: The encoder starts from the all-zero state; which means the
delay elements are refreshed to 0’s before the first input. We encode 2 bits u1, u2 to obtain
c1, c2, c3, c4. At the end, we add two redundant bits u3, u4 as input to the convolutional
encoder to bring it back to all zeros state.

→Thus, a total of 8 symbols x̂n, n = 1, 2, . . . , 8 are transmitted (this is our actual coded
symbols mapped using BPSK) corresponding to the codeword sequence c1, c2, . . . , c8. The
ISI channel hl is given by its z-transform as follows:

H(z) = 1.5− 0.5z−4. (57)

At the receiver, complex AWGN noise wn with i.i.d real and imaginary components ∼
η(0, σ2) is added to the received symbols yn which is of length Nc + 2L− 2.

The problem: Assuming that the transmitter, using Nc = 8 sub-carriers, employs re-
quired cyclic prefix as it transmits using OFDM, derive the “metric” that needs to be
considered at the decoder of the convolutional code to retrieve the maximum likelihood
sequence x′1, x

′
2, . . . , x

′
8 corresponding to the transmitted sequence x̂1, x̂2, . . . , x̂8.

Hint: To do this, first assume that you have processed the received OFDM symbols yn i.e.
assume that you have removed cyclic prefix and the last L−1 symbols, where L denotes the
number of coefficients in the channel impulse response. Perform the required length DFT
of the channel impulse response and obtain a sequence of the Nc data symbols x̂n which
are weighted according to the Nc-point DFT of the channel coefficients plus the AWGN
noise. This is the parallel AWGN channel representation obtained by using OFDM. Your
task now is to find the metric to be implemented.

Note: For this problem, use the following (standard) definition of a DFT; the DFT Vk of
an Nc point sequence vn, n = 0, 1, . . . , Nc − 1 is:

Vk =

Nc−1∑
n=0

vne
− j2πkn

Nc , k = 0, 1, . . . , Nc − 1.

Provide rigorous explanation for every conceptual step that you take.

(Solution starts here)

(a) From the outputs shown in the state diagram, we can construct the following truth table:

bj bj−1 bj−2 c2j−1 c2j
0 0 0 0 0
0 0 1 0 1
0 1 0 1 0
0 1 1 1 1
1 0 0 1 1
1 0 1 1 0
1 1 0 0 1
1 1 1 0 0

From this we can see that c2j−1 = bj ⊕ bj−1 and c2j = bj ⊕ bj−2. The completed encoder
structure is shown in Fig. 6.
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DELAY DELAY
Input

bj

c2j-1

c2j

Outputs
bj-1 bj-2

Figure 6: Completed encoder structure

(b) Analysis of OFDM system: We know that the parallel AWGN channel representation of
an OFDM system is

Ỹ [k] = H̃[k]x̂[k] + W̃ [k], k = 1, 2, . . . , Nc

where Ỹk, H̃k and W̃k are the Nc-point DFT’s of the output from the channel, the channel
impulse response and the AWGN noise. The first step is to find the Nc-point DFT of the
channel impulse response. From the z-transform of the channel, we note that the impulse
response of the channel is

hn = [1.5 0 0 0 − 0.5 0 0 0] . (58)

Thus the DFT of the channel response is:

H̃k =

Nc−1∑
n=0

hne
− j2πkn

Nc , k = 0, 1, . . . Nc − 1

= 1.5− 0.5e−jπk, k = 0, 1, . . . 7

= 1.5− (0.5)(−1)k, k = 0, 1, . . . 7

= [1 2 1 2 1 2 1 2]. (59)

For j ∈ {1, 2, 3, 4}, we now have (substituting the values of DFT’s of channel impulse
response in our parallel AWGN channel representation)

Ỹ [2j] = 2 · x̂[2j] + W̃ [2j] (60)

Ỹ [2j − 1] = 1 · x̂[2j − 1] + W̃ [2j − 1]. (61)

Metric: We now proceed to derive the metric for this parallel weighted AWGN chan-
nel for convolutional decoding. We are looking for the maximum likelihood sequence
x′1, x

′
2, . . . , x

′
8. First we write the conditional PDF corresponding to the received sequence

corresponding to the parallel AWGN channel representation as follows:

fỸ|x̂ (ỹ | x̂) =
1

√
2πσ2

Nc
e−

1
2σ2

∑
j=1,3,5,7(Ỹ [j]−x̂[j])

2
+
∑
j=2,4,6,8(Ỹ [j]−2·x̂[j])

2

. (62)

The maximum likelihood decoding rule picks the x̂ that maximizes (62). By making
appropriate manipulations (and since x̂2 = 1,∀x̂) the appropriate sequence x′ among all
possible sequences x̂ is the one that minimizes the metric

4∑
j=1

2 · x̂[2j]Ỹ [2j] + x̂[2j − 1]Ỹ [2j − 1].
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Therefore, the result of accounting for the channel response in this case is a weighting
of every other term by a factor of 2 while looking for the maximum likelihood received
sequence. A very intuitive explanation would go as follows: at some time instants our
constellations are changed (scaled by the DFT of the channel impulse response) and at
other time instants we receive one of the points from the transmitted constellation. In
order to account for this scaling, we scale our constellation appropriately for different time
instants to look for the best correlation metric.

19



(This page left intentionally blank)

20



Problem 6 (Baseband and Passband Signaling (16 pts))

Let the transmitted bandpass (or passband) signal be given by

x(t) = a cos
(

2πfct+
π

2

)
− b sin

(
2πfct+

π

2

)
(63)

and a ∈ {1, 2}, b ∈ {1, 2}.

(a) Find the baseband equivalent xb(t) = x1(t) + jx2(t) for the transmitted signal where “j” [6pts]
denotes imaginary component.

(b) Find the vector representation of the baseband signal and draw the corresponding signal [3pts]
constellation.

(c) If a =

{
1 w.p 1

2
2 w.p 1

2

and b =

{
1 w.p 1

2
2 w.p 1

2

, find the average energy of the baseband signal. [2pts]

(d) Is this a minimum energy configuration? If not, how will you modify the constellation [5pts]
so that it is of minimum energy? Draw the minimum energy signal constellation if your
answer was no.

(Solution starts here)

(a) We first find the real component of xb(t):

x1(t) = LPF
{√

2x(t) cos(2πfct)
}

(64)

= (
√

2)LPF
{
a cos

(
2πfct+

π

2

)
cos(2πfct)− b sin

(
2πfct+

π

2

)
cos(2πfct)

}
=

(√
2

2

)
LPF

{
a cos

(π
2

)
+ a cos

(
4πfct+

π

2

)
− b sin

(
4πfct+

π

2

)
− b sin

(π
2

)}
= − b√

2
. (65)

Similarly, we find x2(t):

x2(t) = LPF
{
−
√

2x(t) sin(2πfct)
}

(66)

= (−
√

2)LPF
{
a cos

(
2πfct+

π

2

)
sin(2πfct)− b sin

(
2πfct+

π

2

)
sin(2πfct)

}
= −

(√
2

2

)
LPF

{
a sin

(
4πfct+

π

2

)
− a sin

(π
2

)
− b cos

(π
2

)
+ b cos

(
4πfct+

π

2

)}
=

a√
2
. (67)

Therefore, we have that

xb(t) =
−b+ ja√

2
1t.

(b) The constellation is clearly made of the points 1√
2
× {(−2, 1), (−1, 2), (−1, 1), (−2, 2)} .
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(c) Since each point is equally probable, the average energy is simply the average of the
energies of each point in the constellation and thus

Eavg =
1

4
(1 + 2.5 + 2.5 + 4)

= 2.5.

(d) This is not a minimum-energy constellation. If we shift the constellation by
(

3
2
√
2
,− 3

2
√
2

)
,

then the new constellation would be centered at zero and would consist of the points
1

2
√
2
× {(1,−1), (1, 1), (−1,−1), (−1, 1)}. Since the points are equiprobable, and the cen-

troid of the new constellation is at zero, this new constellation is the minimum-energy
configuration.
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