
Communication Systems EE 132A UCLA Winter quarter 2011/2012
Prof. Suhas Diggavi Handout #36, Monday, 19th March 2012

FINAL EXAM
Monday, 19th March, 2012, 15:00-18:00

This exam has 6 problems and 100 points in total.

Instructions

• You are allowed to use 2 sheets of paper for reference. No mobile phones or calculators
are allowed in the exam.

• You can attempt the problems in any order as long as it is clear which problem is being
attempted and which solution to the problem you want us to grade.

• If you are stuck in any part of a problem do not dwell on it, try to move on and attempt
it later.

• Please solve every problem on separate paper sheets.

• It is your responsibility to number the pages of your solutions and write on the first
sheet the total number of pages submitted.

Q-function Values:

Q(0) = 0.5 Q(4) = 3.17× 10−5

Q(0.5) = 0.31 Q(4.4) = 5× 10−6

Q(2/3) = 0.25 Q(5) = 2.87× 10−7

Q(1) = 0.16 Q(7.5) = 3.22× 10−14

Q(1.5) = 0.067 Q(10) = 7.77× 10−24

Q(2) = 0.023 Q(12.5) = 3.86× 10−36

Q(2.5) = 0.0062 Q(15) = 3.85× 10−51

Q(3) = 0.0013 Q(25) = 3.38× 10−138

Q(3.5) = 0.00023 Q(∞) = 0

Good Luck!

Problem 1 (Comparing PSK systems (17 pts))

Suppose we transmit aM -PSK constellation, where for messagem ∈ {0, . . . ,M−1}, we transmit
the 2-dimensional signal sm =

√
Eej

2πm
M . The transmission is over a AWGN channel and the

received (discrete-time) signal is
y = s + z

where z is a 2 dimensional zero-mean Gaussian with covariance σ2I.

(a) Find an expression for the probability of symbol error for the 4-PSK system, as a function [5pts]
of average transmit energy E and σ2.
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(b) Upper bound the error probability using the Nearest-Neighbor Union Bound (NNUB). [3pts]

(c) Using the bound in (b) find the SNR E
σ2 for which the symbol error would be 10−5. [3pts]

(d) Now consider a 8-PSK system. Assume that the energy per transmitted symbol is 3E/2 [6pts]
(this will ensure that bit energy comparisons with the 4-PSK system are fair). Bound the
the symbol error rate, using the NNUB for the 8-PSK system in terms of SNR. Compare
this with the error rate in (b) for the same energy per bit.

Problem 2 ( The Z-Channel (16 pts))

Consider the following binary channel shown in Figure 1.

0 0

1 1

1

p

1−p

X Y

Figure 1: The Z-channel.

(a) Let us consider a single transmission with P [X = 0] = q, P [X = 1] = 1− q. Assume that [10pts]
the prior q is known at the decoder and of course p is known as well. Given observation
Y , give the decision rule that minimizes the probability of error, i.e., P

[
X̂ 6= X

]
.

You can assume that q ∈ [0, 1
2 ] and p ∈ [0, 1

2 ].
Hint: Consider cases when q

1−q ≶ p.

(b) Now, consider successive transmissions where the same input symbol X is transmitted n [6pts]
times over independent realizations of this channel. As before, consider the priors to be
P [X = 0] = q, P [X = 1] = 1 − q, again known at the decoder. Given the observations
Y1, . . . , Yn, give the decision rule that minimizes the error probability.

Problem 3 (PAM constellation design (21 pts))

Suppose you can send a PAM constellation depicted in Figure 2, and the problem is in choosing
the appropriate constellation according to the requirements. Suppose we are transmitting over
an AWGN channel

d

−d/2 d/2 (M−1)d/2−(M−1)d/2

Figure 2: The M-PAM constellation.

y[k] = s[k] + z[k],

where z ∼ η(0, σ2). Suppose we operate at SNR of 30dB. Recall that as done in class, for PAM
constellations the signal energy is

E =
d2

12
(M2 − 1),
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where d is the minimum distance. The SNR is E
σ2 .

(a) If we sent b bits per transmission, i.e., M = 2b, then the minimum distance d =
√

12E
4b−1

. [10pts]
Denote E(b) as the energy needed to send b bits for a given minimum distance d, i.e.,

d =

√
12E(b)
4b − 1

(1)

If we want to maintain the same minimum distance, then show that the energy needed
for sending b+ 1 bits can be written as,

E(b+ 1) = 4E(b) +
d2

4

Hint: Note that as we need d to remain constant, we can use (1) to obtain this result.

(b) Find the largest constellation with integer b for which Pe < 5.74 × 10−7, i.e., number of [6pts]
messages is M = 2b.
Hint: You can use the Nearest Neighbor union bound for PAM constellations (where the
maximum number of Nearest Neighbors is 2) as an approximation for Pe.

(c) How much improvement in SNR would you need to increase the number of bits per trans- [5pts]
mission by 2 from the value that you found in part (b) for the same error probability?
That is we want to send b+2 bits per transmission, where b is the value found in part (b).

Problem 4 (OFDM (15 pts))

Consider a discrete ISI channel described by the model

y[k] = s[k] ∗ h[k] + z[k] =
L−1∑
n=0

h[n]s[k − n] + z[k]

where z[k] is AWGN noise with variance N0
2 , s[k] is the transmitted signal point, y[k] is the

received signal, and h[k] is the transfer function of the channel, which has two taps and a
z-transform given by

H(z) = 1 + 0.9z−1 (2)

(a) Suppose we use OFDM with Nc = 4 for this channel. What is the length of the cyclic [2pts]
prefix that is needed for this channel?

(b) Now, we have learned in class that by using the cyclic prefix of the appropriate length [5pts]
(given in (a) above) we can obtain an equivalent set of parallel channels:

Ỹ [m] = H̃[m]S̃[m] + Z̃[m],m = 0, . . . , Nc − 1,

where

H̃[m] =
L−1∑
l=0

h[l]e−j
2πml
Nc .

For the channel given in (2), evaluate explicitly H̃[m], using the same Nc we had specified
in (a).
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(c) Suppose that for each sub-channel m ∈ {0, 1, 2, 3}, we are going to send a signal with [8pts]
transmit energy E[|S̃|2] = E , therefore yielding a received SNR of |H̃[m]|2E

N0/2
. Find the

received SNRs for the channel in (2).
Hint: Use your calculation from (b) above. Note that for a complex number c = a +
jb, |c|2 = |a|2 + |b|2 and also ejθ = cosθ + jsinθ.

Problem 5 (Convolution codes (14 pts))

Consider the convolutional encoder and the state diagram given in Figures 3 and 4 respectively.
The state diagram in Figure 3 is complete, but the block diagram in Figure 4 is not complete.
State labels in the state diagram are given in the order as in class, i.e., bj−1bj−2 (in other words,
state 10 in the state diagram corresponds to the state where bj−1 = 1, bj−2 = 0. Outputs in the
state diagram are given in the order c2j−1c2j . In other words, if the encoder is in state 01, i.e.,
bj−1 = 0, bj−2 = 1 and the input bj = 1, then the output is 10, i.e., c2j−1 = 1 = bj and c2j = 0.

bj−2

bj
c2j−1 c2j

bj−1

0 0 

1 1

1 0 0 1

1, 11

1, 10

0, 00

0, 01

0, 01

0, 001,10

1, 11

, 

Figure 3: The state diagram of the convolutional code.

(a) Complete the design of this encoder by finding the inputs to the XOR adder which output [8pts]
c2j . In other words, for your answer, copy the block diagram given in Figure 4, and then
add to it the necessary connections to the adder such that the outputs shown on the
diagram are generated.

(b) Draw the detour flow graph, and label the edges by the input weight using the symbol I, [6pts]
and the output weight using the symbol D.

Problem 6 (Fading channel (17 pts))

Suppose we want to send a 4-PAM signal constellation, illustrated in Figure 5 over a slowly
fading wireless channel. The equivalent discrete-time channel as seen in the lectures, can be
modeled as:
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b j b j−1 b j−2

c 2j−1

c 2j??

DELAY DELAY

Figure 4: Representation of the convolutional code in terms of the function of the input bits.
You need to complete this representation using the state representation in Figure 3.

d

−d/2 d/2−3d/2 3d/2

Figure 5: The 4-PAM constellation.

y[k] = hs[k] + z[k], (3)

where z[k] = zI [k] + jzQ[k] is complex additive Gaussian noise, with zI [k] ∼ η(0, σ
2

2 ), zQ[k] ∼
η(0, σ

2

2 ), zI [k] and zQ[k] being independent of each other.

(a) Suppose the channel h is a fixed and known constant. Then find the optimal decision [4pts]
regions to minimize error probability.

(b) Find the error probability for the decision rule in (a), when the channel h is a fixed [2pts]
constant and known.

(c) Now suppose we have a statistical model for the wireless channel. The fading channel h is [7pts]
statistically modeled as a complex Gaussian channel, and therefore |h|2 is exponentially
distributed, i.e.,

f|h|2(a) = e−a, a ≥ 0. (4)

Since the channel is assumed to be known to the receiver, the optimal decision rule remains
the same as in (a).

Find the average error probability, i.e., E|h|2 [Pe(|h|2)].
Hint: For a given h one can write the error probability in terms of a Q-function that

depends on |h|2. One can then use the following identity E[Q(|h|U)] = 1
2

[
1−

√
U2

U2+2

]
,

for the statistical model described in (4). For example in HW 8 you did this calculation for
binary transmission and found that the average error probability was E[Q(

√
|h|22SNR)] =

1
2

[
1−

√
SNR
SNR+1

]
.

(d) Use the approximation 1√
1+x
≈ 1− x

2 for small x, to demonstrate the behavior of the error [4pts]
probability calculated in (d) for large SNR. Using this approximation determine the SNR
needed for error probability of 10−3.
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Communication Systems EE 132A UCLA Winter quarter 2011/2012
Prof. Suhas Diggavi Handout #37, Monday, 19th March 2012

Final Solution

Problem 1 (Comparing PSK Systems)

(a) The absolute probability of error can be found by considering the following signal con-
stellation for 4-PSK (the probability of error does not change with rotations around the
origin, so any rotation of the constellation is equivalent).

To evaluate the error for this constellation, first find the probability of correct decision
Pc and then from this find the probability of error Pe = 1 − Pc. Each signal is equally-
probable and each has the same energy, so the average error for the whole system will be
the same as for any of the individual symbols. We choose the symbol in the top right
corner and evaluate Pc,

Pc = P (Z1 > −
√

2E
2

) · P (Z2 > −
√

2E
2

)

= Q(−
√

2E
2σ

) ·Q(−
√

2E
2σ

)

= (1−Q(
√

2E
2σ

))2

= 1− 2Q(
√

2E
2σ

) +Q2(
√

2E
2σ

)

Pe = 1− Pc

= 2Q(
√

2E
2σ

)−Q2(
√

2E
2σ

)

1



(b) Each signal has 2 nearest neighbors at a distance dmin =
√

2E . Therefore the NNUB is

Pe ≤ 2Q(
√

2E
2σ

)

(c) Using Pe = 10−5 and the NNUB found in part (b) we find

10−5 = 2Q(
√

2E
2σ

)

5 · 10−6 = Q(
√

2E
2σ

)

5 · 10−6 = Q(
√

2
2

√
SNR)

where SNR is E/σ2. From the Q-table provided, it could be determined that Q(4.4) =
5 · 10−6. Therefore

√
2

2

√
SNR = 4.4

1
2
· SNR = (4.4)2

SNR = 2(4.4)2 ≈ 38.72

(d) For the 8-PSK system, the distance between each two adjacent points is d = 2
√
E sin(π/8).

Here, E = 3Ea/2, where Ea is the energy from part (a). There are 2 nearest neighbors in
this constellation as well, giving a NNUB of

Pe ≤ 2Q
(√

3Ea
2σ2

sin(π/8)
)

= 2Q
(√

3
2

SNR · sin(π/8)
)

The distance between points in 8-PSK is closer than for the 4-PSK system, so the error
rate is higher for the same energy.

Problem 2 (The Z-Channel)

(a) Writing out the MAP hypothesis test for this scenario gives

PX|Y (0|y)
X̂=0
≷
X̂=1

PX|Y (1|y)

PX(0)PY |X(y|0)
X̂=0
≷
X̂=1

PX(1)PY |X(y|1)

PX(0)
PX(1)

X̂=0
≷
X̂=1

PY |X(y|1)
PY |X(y|0)

Now we must evaluate what each of these four values are. From the problem statement,
PX(1) = 1 − q and PX(0) = q. By evaluating the Z-channel diagram, we can write the
other two values as

PY |X(y|0) =
{

1 if Y = 0
0 if Y = 1

PY |X(y|1) =
{
p if Y = 0
1− p if Y = 1
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So if Y = 0 (the received value is 0), the hypothesis test becomes

q

1− q
X̂=0
≷
X̂=1

p

and if Y = 1, we will always decide X̂ = 1 because from the diagram, if Y = 1, it can
only come from X = 1. In summary the decision is made according to

X̂ =
{

0 if Y = 0, q
1−q > p

1 otherwise

(b) Let the number of 1’s received be denoted as k, where Z = k is a sufficient statistic for
decoding. Now we can write the MAP test for this receiver as

PX|Z(0|k)
X̂=0
≷
X̂=1

PX|Z(1|k)

PX(0)
PX(1)

X̂=0
≷
X̂=1

PZ|X(k|1)
PZ|X(k|0)

As before the ratio on the left side is q
1−q . If any 1’s are received, we must still decide

that X = 1 because there is no other way to receive Y = 1. In the case that k = 0, then
we decide X̂ = 0 when

q

1− q
X̂=0
≷
X̂=1

PZ|X(0|1)
PZ|X(0|0)

q

1− q
X̂=0
≷
X̂=1

pn

In summary, the decision is

X̂ =
{

0 if k = 0, q
1−q > pn

1 otherwise

Problem 3 (PAM Constellation Design)

(a) Since d does not change when increasing the number of bits, as given in the problem,
equate the expressions for d for both E(b) and E(b+ 1) and simplify to obtain the desired
expression,

d =

√
12E(b)
4b − 1

=

√
12E(b+ 1)
4b+1 − 1

Taking the square of both sides and dividing by 12,

E(b)
4b − 1

=
E(b+ 1)
4 · 4b − 1
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Finally, solving for E(b+ 1) in terms of E(b),

E(b+ 1) = E(b)
4 · 4b − 1

4b − 1

= E(b)
4(4b − 1

4)
4b − 1

= 4E(b)
(4b − 1 + 3

4)
4b − 1

= 4E(b) +
3E(b)
4b − 1

= 4E(b) +
d2

4

(b) The NNUB for a PAM constellation, assuming that the number of nearest neighbors is 2,
is given by

Pe ≤ 2Q
( d

2σ
)

where d is given in part (a) of this problem. Set Pe = 5.74 · 10−7 and solve:

5.74 · 10−7 = 2Q
(

1
2σ

√
12E

4b − 1

)

2.87 · 10−7 = Q

(√
3E

σ2(4b − 1)

)

2.87 · 10−7 = Q

(√
SNR

√
3

4b − 1

)
From the Q-function table provided, Q(5) = 2.87 · 10−7, so

√
SNR

√
3

4b − 1
= 5

3 · SNR
4b − 1

= 25

b = log4(
3 · SNR

25
+ 1)

The SNR was provided in the problem statement as SNR = 30 dB = 1000. Plugging in,
b = log4(121), so b is somewhere between 3 and 4. To decide whether to pick 3 or 4,
consider that a larger value of b makes the denominator in the Q function larger, making
the argument smaller, which makes the error larger. Likewise, picking a smaller value of
b makes the error smaller, so b = 3 is the maximum-allowable numbers of bits.

(c) There are several ways to solve this section. One would be to use the formula from part
(a) and solve recursively. Another way would be to use the derivation from part (b),
plugging in b = 3 + 2 = 5 and solve for SNR. This gives

3 · SNR
45 − 1

= 25
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SNR =
25
3
· 1023 = 8525 ≈ 39 dB

An approximation could be make without a calculator. The SNR should be increased by
9 dB. A typical approximation is that increasing the number of bits by 1 requires a 6 dB
increase in SNR. This holds in this case because the the exact number of bits calculated
in part (c) was somewhere between 3 and 4, so a 9 dB increase makes sense.

Problem 4 (OFDM)

(a) The length of the cyclic prefix is the number of taps from delays in the system, so it is 1.

(b) By entering known values and evaluating the sum, we obtain

H̃[m] = h[0]e0 + h[1]e−j
πm
2

= 1 + 0.9e−j
πm
2

(c) We can find the transfer function for each sub-channel m ∈ {0, 1, 2, 3} as

H̃[0] = 1 + 0.9e0 = 1.9
H̃[1] = 1 + 0.9e−jπ/2 = 1− 0.9j
H̃[2] = 1 + 0.9e−jπ = 1− 0.9 = 0.1
H̃[3] = 1 + 0.9e−j3π/2 = 1 + 0.9j

Now evaluate the SNR as |H̃[m]|2E
N0/2

for each sub-channel. First find the magnitude squared
of the sub-channels:

|H̃[0]|2 = 1.92 = 3.61
|H̃[1]|2 = 12 + 0.92 = 1.81
|H̃[2]|2 = 0.12 = 0.01
|H̃[3]|2 = 12 + 0.92 = 1.81

Now evaluate the SNRs for each sub-channel:

SNR0 = 2(3.61) EN0
= 7.22 EN0

SNR1 = 2(1.81) EN0
= 3.62 EN0

SNR2 = 2(0.01) EN0
= 0.02 EN0

SNR3 = 2(1.81) EN0
= 3.62 EN0

Problem 5 (Convolution Codes)

(a) From examining the outputs given in the state diagram, it is seen that the second output
is c2j = bj ⊕ bj−1 ⊕ bj−2. This can be verified by looking at each of the branches:

From 00 to 00: c2j = bj ⊕ bj−1 ⊕ bj−2 = 0⊕ 0⊕ 0 = 0
From 00 to 10: c2j = 1⊕ 0⊕ 0 = 1
From 10 to 01: c2j = 0⊕ 1⊕ 0 = 1
From 10 to 11: c2j = 1⊕ 1⊕ 0 = 0
From 11 to 01: c2j = 0⊕ 1⊕ 1 = 0

5



From 11 to 11: c2j = 1⊕ 1⊕ 1 = 1
From 01 to 00: c2j = 0⊕ 0⊕ 1 = 1
From 01 to 10: c2j = 1⊕ 0⊕ 1 = 0

The figure below shows the correct block diagram.

(b) The reference path is the all-zero codeword. Therefore, for no errors the input should
always be 0 and the output should always be 00. The detour flowgraph is created by
examining all paths through the state diagram the code can take after an initial input
error. Each branch is labeled with IiDd, where i is the number of input bits that have
changed for that branch from the reference (or equivalently the number of input 1’s),
and d is the umber of output bits that have changed for that branch from the reference
(number of output 1’s). The figure below shows the correct labeling (note that I0D0 = 1).
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Problem 6 (Fading Channel)

(a) A fixed, constant h just has the effect of scaling the amplitude of the signals by a constant
value. An equivalent channel would look like

with the decision regions separated by vertical lines and shaded. Formally, the decision
regions are

ŝ[k] =


0 if y[k] ≤ −|h|d
1 if −|h|d < y[k] ≤ 0
2 if 0 < y[k] ≤ |h|d
3 if y[k] > |h|d

if the points are labeled s = {0, 1, 2, 3} from left to right.

(b) The effective noise value of the channel is σ2
Eff = σ2

Re + σ2
Im = σ2

2 + σ2

2 = σ2. Therefore,
the error for points 0 and 3 is

Pe(0) = Pe(3) = Q

(
|h|d
2σ

)
since they only have one adjacent point. For points 1 and 2,

Pe(1) = Pe(2) = 2Q
(
|h|d
2σ

)
since they have two adjacent points. Averaging based on the assumption that all signals
are equally-likely,

Pe =
3
2
Q

(
|h|d
2σ

)
(c) Since for binary transmission, the error probability for a fixed h is

Pe = Q

(
|h|d
2σ

)
which produced an average energy E[Q( |h|d2σ )] of

1
2

[
1−

√
SNR

1 + SNR

]
the 4-PAM error is just the binary case scaled by the constant 3/2, so

E[
3
2
Q

(
|h|d
2σ

)
] =

3
2
· 1

2

[
1−

√
SNR

1 + SNR

]
=

3
4

[
1−

√
SNR

1 + SNR

]
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(d) Dividing top and bottom of the fraction by SNR and using x = 1/SNR, the approximation
1√
1+x
≈ 1− x

2 can be applied to make the approximation

Pe =
3
4

[
1− 1√

1 + x

]
≈ 3

4
[1− (1− x

2
)] =

3
4
· x

2

Substituting back for x and setting Pe = 10−3,

10−3 ≈ 3
8 · SNR

So SNR ≈ 3000/8 = 375 ≈ 25.7 dB.
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