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FORMULAE SHEET
C(J\mm rilfid| rflm 2l i I FIEE " n
AUB=RBUA  and  ANE=ENA (203 P[U,'.R]= ZEP{.—‘.J:] - ?iP[Ajr‘ldg]d----
£=1 = I
Associative properties:
— 1

AU(BUC) = (AUBJUC  and  AN(BNC) = (ANEINC (13 F{-)PAN N A)
Distributive properties: Axivor 1 0= P[A]

-~ Axicum 1 P8 =1
AV(BAC) = (AUBIN(AUC)  and Axfous 11 IFAM B = &, then PLAU B] = P[A] + P[B].
An{ﬂ LI(_'] - {Aﬂ_ﬂ]u [Aﬂf]_ {2_3} Axteun (117 If Ay, Az . 1% asequence of events such that

By applying the above properiics we can derive new identitics. DeMorgan's rules pro-
vide an imporiant such example:

DeMorgan’s rules:

AN Ay = Slorall i # f, then

P[Q.ﬂ.{l - gp[.-u].

& n
P{B) = PLU{BI‘]A,}] =% P(BNA,)

=P(BMNA,)+-+PBNA,).

P Ap | = FP|Ag]+—— Union bound
(o] = Bun

Equivalert form of independence

P{A) = P(AIB) = P(AVP(B) = P{An E)
= P(B) = P(B|4)

(AUBYF = AANE  and  (ANEF = FUE (243
Events Sets MNotations
Aand B A and B are disjoint AnBeE
cannot geeur
simultaneously
No two of the Ay 1=1,2,.., are ANA, =3,
events A, Ay, . pair-wise digjoint i#f
can oecur
simultaneously
A implies B B contains A AcB
or A s contaned i B
Bayes Rule:
_P(En4) _ PBI4)P(4) __ P(B|4)P(4)
P(4]B) =

P(B)  XE_ P(BnAy) Ei_, P(BIA)P(A)

Cumulative Distribution Function:

Fyl(x) =Pz e5:X(s) =x) =P(¥ =x), -
o S ]

Pla<® <b) =F(b)-Fia)

Flas X <b)=F{b)-Fla™)

I T ) I

Sampling with replacement and ordering e

Sampling without replacement and ordesing

!
= [::) “k (nn— B!
+

_fn—1+k
-1
Binomial Randonm Varizble

Sx = {0, 1,...,n}

0=p=1 Pk“(:)ﬂ*{' -, k=00

Sampling without replacement and without ordering

Sampling with replacement and without ordering

Bernoulll Randaom Varlable
Sy = {0,1}
P=g=1-p p=p

Geamerric Rendom Varishle

Polson Rondom Yaorlable

First Versiom Sy = {0, L2,...}
Sy = (01,20

Probability MassFunction: py(x) = P{X =x)

dFy (¥
dx

Probability Densky Function: f (x) =

Fix)= J-I Fidde Plx< X Zx+Ah) % flx)ah

Plasx sb) =[] flxids Flx) = [T f(ehdes
I fldde=1.

o

Gaussian pdf: f[x}:mas ot ,—oEx @
Gaussian cdf:
wanl Xt
1 e
F(x]:Ef e Tde _=I:|[T}

-

pe=pll-p* E=01..
o
- k=01... and L]
Uniform Random Variable Pe= Tt = ande =
§x = {L2%4...,L
=i } Discrete
1
== k=12...L
Pe=T 2,
Exponential Random Variahle Uniform Random Variable
Sy = [0.20) Sy = [a.b]
frlxy=a™ x=0 and A>0

1
Ixlx)=g—= @asx=b
Continuous

Function of a RandomVariable
Method 1: iy} =Pz e §:¥ () <3) =
Plse 51g(x(s)) < y) and then £ (y)= %

Method 2t For allx satisfying ¥ = g(x)
A =22

dx

Al tisfying e g~ ()

£
=1 dx

x=xy= g 2¥)
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1. (15 points) Easing in to Midterm!

(A) (6 points) My Gift to You. Circling the correct answer is worth +2 points, circling the incorrect
answer is worth -1 point. Not circling either is worth 0 point.
(a) Suppose X~N(0,1). That is, X is a Gaussian distributed random variable with 4 = 0 and
0? =1.Then, P(X =0) = 0.5.

TRUE

(b) If A and B are mutually exclusive events, P(A U B) = P(A) + P(B) — P(A)P(B).

TRUE

(c) When you are sitting on the Santa Monica beach, soaking in the sun on a bright sunny
afternoon in winter, and you have no work to do, that is the best time to solve the Probability
problems.

(No Wrong Answer)

(B) (2 points) Suppose P(4) = 3, P(A U B) = 2and P(A N B) = Z. Find P(B).
Solution:

P(AUB) =P(A)+P(B)—P(ANB)
1 1 1 11
P(B)=P(AUB)+P(ANnB)—P(A) _§+§_§_%
(C) (7 points) It is known that for two events, A and B, P(4) = %and P(B|A) = % and that A and B

are independent. For each of the following statements, say true, false or cannot tell and justify
your answer.

(@) (2 points) A and B are mutually exclusive.

(b) (2 points) A and A n B are independent.

(c) (2 points) P(B) = P(A|B).

(d) (1 point) P(B) < P(A).

Solution:

(@) A and B are mutually exclusive.

False: P(A n B) = P(A)P(B). But because A and B are independent P(B) = P(B|A) = %

SoP(ANB)==#0.
(b) A and A N B are independent.

False: P(AN(ANB)) =P(ANB) =2 # P(A)P(ANB) = -
(c) P(B) = P(A|B)

False: P(A|B) =
(d) P(B) < P(4) \

True: P(B) = %and P(A) = -

P(ANB) _ 4

. 1
PG 5 while P(B) = -.

2

2. (9 points) Let’s do some counting and apply Bayes
(A) (4 points) 52-card deck consists of 4 suits (clubs, diamonds, hearts, spades), and each suit has 13
cards (2, 3,4,5,6,7,8,9,10,J, Q, K, A). Suppose you are dealt a poker hand consisting of 5
cards. Compute the probability of getting flush. Flush hand is 5 cards of the same suit. Leave your
answer in the form of (7).
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Solution:
4(%5)
%)

(B) (5 points) Binary Non-Symmetric Channel. Consider a “binary non-symmetric channel with input
of '0"and '1' each with probability of 0.5. Suppose the channel transition probabilities are:
P(0 received|0 sent) = 0.95; P(1 received|0 sent) = 0.05; P(1 received|1 sent) = 0.90;
P (0 received|1 sent) = 0.10. Suppose we received a '1', what is the probability that a '1' was
sent?
Solution:
Applying Bayes Rule and Theorem of Total Probability,

P(1received, 1sent) P(1received|l sent)P(1 sent)
P(1received) P(1 received)

B 0.90 x 0.5

~ P(1received|1 sent)P(1 sent) + P(1 received|0 sent)P (0 sent)

0.9 x 0.5 0.45
= 0.9474

T 09%x05+005%x05 0475

P(flush) = = 0.002

P(1 sent|1 received) =

3. (11 points) Binomial and Uniform Random Variables
(A) (6 points) A wheel used in gambling can stop in 18 equally likely positions numbered from 1 to
18. A person places bets on all the positions divisible by 3.
(d) (4 points) What is the probability that the person will win exactly three times in 8 attempts?
Leave your answer in the form of (7).

(b) (2 points) Can we approximate using Poisson random variable? Why or why not?
Solution:

(@) Since there are 6 possible number from 1 to 18 divisible by 3, and each one is equally likely,

1

then the probability of winning at each attempt isp = 1% =3 The probability of losing at

each attempt is g = % Since this is a Bernoulli trial of length n = 8; then p(X = 3) =
s (1)’ (2)°
C3 (3) (3) )
(b) No becausen = 8,p = 3 and np = gdoes not satisfy n > np > p.

(B) (4+1 points) Let X be uniformly distributed on (0, 1). Find cdf and pdf of Y = —%ln(l - X),

where a > 0. What is the name of this random variable ?
Solution:

PY<y)= P(—%ln(l —-X) < y) =P(In(1-X)=—-ay)=P(1—-X=e %)
=PX<l1l—-eP)=F-e®)=1—-e"% fory>0

Therefore,
FFy)=1—e ™% fory>0

0, otherwise

fY(.V) = {ae—ay’ ify >0
Exponential random variable.
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4. (15 points) Fun with Rayleigh and Gaussian Distributions
(A) (3.5+1.5 points) The Rayleigh random variable has cdf

0, r<o0
Fr(r) = { _rt
1—e 202, 720
Find P(0 < R < 20). Find pdf of this random variable.
Solution:
_4a? _a® 1
P(0 <R < 20) = FR(20) — Fr(o) = (1 —e 202) - (1 —e 202) =e 2—e?
0, r<o
fr) =4 r ==

—26_202, r=>0
o

(B) (10 points) Suppose the length of a rod is modelled by a Gaussian random variable of u = 1 and
o2 = 0.25. But this model clearly cannot be completely correct since a Gaussian random variable
can take on negative values, which is not possible for the length of the rod. Thus, define a new
random variable X to be the random variable whose pdf is that of the original Gaussian random
variable defined only for positive-values and normalized for unit area. (Note: In this model, we
let the length be arbitrarily long, but with very low probability.) Denote this pdf by fx(x),x >
0; fx(x) = 0,x < 0. (Note, for this new pdf [ fy (x)dx = 1.) In addition, you are given a very
small table of the Gaussian cdf ®(x). Note: ®(x) =1 — Q(x).
®(—3) = 0.00135; (—2) = 0.0228; ¢(—1) = 0.159; ¢(—0.3) = 0.382; ®(—0.2) = 0.421;
®(—0.1) = 0.460.

(@) (6.5 points) Write down explicitly the pdf fx(x) forx = 0
[Hint: Let Y be the original Gaussian random variable with u and o2 as given. To get the new
random variable X from Y, it is already given that if follows distribution of Y but only from
(0, 00). So the challenge here is to find a new pdf fO°° fx(x)dx = 1. To ensure this, you have
to find the area under the pdf of Y on the right side of the origin and use that to normalize to

get unit area under fy(x). That is, if area under right side of origin of f, (v), f0°° frdy =

a, then fy (x) = = f;” fy(¥)dy. Also, note that [ fy (y)dy = 1 — [°__fy(y)dy.]
(b) (3.5 points) Find the probability the rod modelled by this X is between 0.9 and 1.1 explicitly.

Solution:
. ) 1 _=w?
(@) Consider a Gaussian pdf of f(y) = Nor7oid 202 ,—00 <y < oo,Where u = 1and g2 =

0.25. Our new random variable follows distribution of y but for only positive values. So, in

order to satisfy fooo fx(x)dx = 1, we need to normalize it for the area lying under the curve

fooo fy(¥)dy. So let’s calculate the area under the curve fooo fy(3)dy. Area on the left side of
... 0 0-1

the origin is f_oofy(y)dy = (ﬁ) = ®(—2) = 0.0228. In other words, the area to the

right of the origin of f (i) contains only the probability of 0.9772. Thus,

2 23-0.5 _(xz_lé)z 0 <
= . o
fX(’f)l 0.9772 . TIU : 1e1 1 , 0_9x1< " 1
(b) PO =X <11)= f0.9 fx()dx = 0.9772 [q> (\/0.25) —-¢ (\/0.25)] = 09772 [(0.2) -
®(—0.2)] = ——[1 — ®(—0.2) — &(—0.2)] = =22 = 0.1617.
0.9772 0.9772
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